Có \(60\) quả cầu được đánh số từ \(1\) đến \(60.\) Lấy ngẫu nhiên đồng thời hai quả
Có \(60\) quả cầu được đánh số từ \(1\) đến \(60.\) Lấy ngẫu nhiên đồng thời hai quả cầu rồi nhân các số trên hai quả cầu với nhau. Tính xác suất để tích nhận được là số chia hết cho \(10.\)
Đáp án đúng là: B
Quảng cáo
Gọi biến cố A: “Lấy được hai quả cầu mà tích hai số trên hai quả cầu chia hết cho 10”.
TH1: Hai quả cầu lấy được có đúng một quả mang số chia hết cho 10
TH2: Hai quả cầu lấy dược đều là số chia hết cho 10
TH3: Hai quả cầu lấy được có 1 quả cầu là số chia hết cho 2 (nhưng không chia hết cho 5) và 1 quả cầu mang số chia hết cho 5 (nhưng không chia hết cho 2)
Xác suất của biến cố A là: \(P\left( A \right) = \dfrac{{{n_A}}}{{{n_\Omega }}}.\)
Đáp án cần chọn là: B
>> 2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com












