Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho hàm số \(f\left( x \right)\) liên tục trên \(\mathbb{R}\) và \(f'\left( x \right) = x{\left( {x - 1}

Câu hỏi số 418420:
Thông hiểu

Cho hàm số \(f\left( x \right)\) liên tục trên \(\mathbb{R}\) và \(f'\left( x \right) = x{\left( {x - 1} \right)^2}.{\left( {x - 2} \right)^3}\), số điểm cực trị của hàm số \(f\left( x \right)\) là:

Đáp án đúng là: C

Quảng cáo

Câu hỏi:418420
Phương pháp giải

Số điểm cực trị của hàm số \(y = f\left( x \right)\) là số nghiệm bội lẻ của phương trình \(f'\left( x \right) = 0\).

Giải chi tiết

Ta có: \(f'\left( x \right) = 0 \Leftrightarrow x{\left( {x - 1} \right)^2}.{\left( {x - 2} \right)^3} = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = 1\\x = 2\end{array} \right.\), trong đó \(x = 0\) là nghiệm bội 1, \(x = 1\) là nghiệm bội 2, \(x = 2\) là nghiệm bội 3.

Vậy hàm số đã cho có 2 điểm cực trị \(x = 0,\,\,x = 2\).

Đáp án cần chọn là: C

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com