Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho hình chóp \(S.ABC\) có \(SA\) vuông góc với mặt phẳng \(\left( {ABC} \right)\), \(SA = 1\) và đáy

Câu hỏi số 421309:
Thông hiểu

Cho hình chóp \(S.ABC\) có \(SA\) vuông góc với mặt phẳng \(\left( {ABC} \right)\), \(SA = 1\) và đáy \(ABC\) là tam giác đều có độ dài cạnh bằng 2. Tính góc giữa hai mặt phẳng \(\left( {SBC} \right)\) và \(\left( {ABC} \right)\).

Đáp án đúng là: C

Quảng cáo

Câu hỏi:421309
Phương pháp giải

Xác định góc giữa hai mặt phẳng \(\left( \alpha  \right),\,\,\left( \beta  \right)\):

- Tìm giao tuyến \(\Delta \) của \(\left( \alpha  \right),\,\,\left( \beta  \right)\).

- Xác định 1 mặt phẳng \(\left( \gamma  \right) \bot \Delta \).

- Tìm các giao tuyến \(a = \left( \alpha  \right) \cap \left( \gamma  \right),b = \left( \beta  \right) \cap \left( \gamma  \right)\)

- Góc giữa hai mặt phẳng \(\left( \alpha  \right),\,\,\left( \beta  \right)\): \(\left( {\widehat {\left( \alpha  \right);\left( \beta  \right)}} \right) = \left( {\widehat {a;b}} \right)\)

Giải chi tiết

Gọi M là trung điểm của BC.

Ta có: \(\left\{ \begin{array}{l}AM \bot BC\\SA \bot BC\end{array} \right. \Rightarrow BC \bot \left( {SAM} \right) \Rightarrow BC \bot SM\).

Ta có: \(\left\{ \begin{array}{l}\left( {SBC} \right) \cap \left( {ABC} \right) = BC\\SM \subset \left( {SBC} \right),\,SM \bot BC\\AM \subset \left( {ABC} \right),\,AM \bot BC\end{array} \right.\)\( \Rightarrow \angle \left( {\left( {SBC} \right);\left( {ABC} \right)} \right) = \angle \left( {SM;AM} \right) = \angle SMA\).

Tam giác SAM vuông tại A: \(SA = 1,\,\,AM = \dfrac{{2.\sqrt 3 }}{2} = \sqrt 3 \) (chiều cao của tam giác đều cạnh 2)\( \Rightarrow \tan \angle SMA = \dfrac{{SA}}{{AM}} = \dfrac{1}{{\sqrt 3 }}\)

 \( \Rightarrow \angle SMA = {30^0} \Rightarrow \angle \left( {\left( {SBC} \right);\left( {ABC} \right)} \right) = {30^0}\).

Đáp án cần chọn là: C

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com