Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho hình hộp \(ABCD.A'B'C'D'\) có đáy \(ABCD\) là hình thoi tâm O và cạnh bằng a, \(\widehat {BAC} =

Câu hỏi số 421332:
Vận dụng cao

Cho hình hộp \(ABCD.A'B'C'D'\) có đáy \(ABCD\) là hình thoi tâm O và cạnh bằng a, \(\widehat {BAC} = {60^0}\). Gọi I, J lần lượt là tâm của các mặt bên \(ABB'A',\,CDD'C'\). Biết \(AI = \dfrac{{a\sqrt 7 }}{2},\,AA' = 2a\) và góc giữa hai mặt phẳng \(\left( {ABB'A'} \right)\) và \(\left( {A'B'C'D'} \right)\) bằng \({60^0}\). Tính theo a thể tích của khối tứ diện \(AOIJ\).

Đáp án đúng là: C

Quảng cáo

Câu hỏi:421332
Phương pháp giải

Lập tỉ lệ thể tích.

Giải chi tiết

Lấy M đối xứng B’ qua C’\( \Rightarrow \) J là trung điểm của AM.

Ta có: \({V_{AOIJ}} = \dfrac{1}{2}.\dfrac{1}{2}.\dfrac{1}{2}.{V_{A.CB'M}} = \dfrac{1}{8}{V_{A.CB'M}}\)

Mà \({S_{\Delta CB'M}} = {S_{BCC'B'}} \)

\(\Rightarrow \)\({V_{A.CB'M}} = {V_{A.BCC'B'}} = \dfrac{1}{3}{V_{ABCD.A'B'C'D'}} \)

\(\Rightarrow {V_{AOIJ}} = \dfrac{1}{{24}}{V_{ABCD.A'B'C'D'}}\)

Ta có: \({S_{ABCD}} = 2.{S_{ABC}} = 2.\dfrac{{{a^2}\sqrt 3 }}{4} = \dfrac{{{a^2}\sqrt 3 }}{2}\)

Tam giác AA’B’ có: \(AB' = a\sqrt 7 ,\,A'B' = a,\,AA' = 2a\)

\( \Rightarrow \cos \widehat {B'AA'} = \dfrac{{7{a^2} + 4{a^2} - {a^2}}}{{2.\sqrt 7 a.2a}} = \dfrac{5}{{2\sqrt 7 }}\)

\( \Rightarrow \sin \widehat {B'AA'} = \sqrt {\dfrac{3}{{28}}} \)

\( \Rightarrow {S_{AA'B'}} = \dfrac{1}{2}.AB'.AA'.\sin \widehat {B'AA'} = \dfrac{1}{2}.a\sqrt 7 .2a.\sqrt {\dfrac{3}{{28}}}  = \dfrac{{{a^2}\sqrt 3 }}{2}\)

Mặt khác \({S_{AA'B'}} = \dfrac{1}{2}.AH.A'B' \Rightarrow \dfrac{1}{2}.AH.a = \dfrac{{{a^2}\sqrt 3 }}{2} \Rightarrow AH = a\sqrt 3 \) (trong đó: AH là đường cao của tam giác AA’B’)

Do góc giữa hai mặt phẳng \(\left( {ABB'A'} \right)\) và \(\left( {A'B'C'D'} \right)\) bằng \({60^0}\) nên

\(d\left( {A;\left( {A'B'C'D'} \right)} \right) = AH.\sin {60^0} = a\sqrt 3 .\dfrac{{\sqrt 3 }}{2} = \dfrac{{3a}}{2}\)

\( \Rightarrow {V_{ABCD.A'B'C'D'}} = \dfrac{{3a}}{2}.\dfrac{{{a^2}\sqrt 3 }}{2} = \dfrac{{3{a^3}\sqrt 3 }}{4} \)

\( \Rightarrow {V_{AOIJ}} = \dfrac{1}{{24}}{V_{ABCD.A'B'C'D'}} = \dfrac{1}{{24}}.\dfrac{{3{a^3}\sqrt 3 }}{4} = \dfrac{{{a^3}\sqrt 3 }}{{32}}\)

Đáp án cần chọn là: C

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com