Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Gọi \(m,\,\,M\) lần lượt là giá trị nhỏ nhất và giá trị lớn nhất của hàm số \(y =

Câu hỏi số 421920:
Thông hiểu

Gọi \(m,\,\,M\) lần lượt là giá trị nhỏ nhất và giá trị lớn nhất của hàm số \(y = \dfrac{1}{2}x - \sqrt {x + 2} \) trên đoạn \(\left[ { - 1;34} \right]\). Tính tổng \(S = 3m + M\).

Đáp án đúng là: A

Quảng cáo

Câu hỏi:421920
Phương pháp giải

- Tính đạo hàm \(y'\) và tìm nghiệm của phương trình \(y' = 0\) thuộc \(\left[ { - 1;34} \right]\).

- Tính giá trị của hàm số tại các điểm đầu mút và tại điểm là nghiệm của phương trình \(y' = 0\) thuộc \(\left[ { - 1;34} \right]\).

- So sánh các giá trị này và kết luận GTNN, GTLN.

Giải chi tiết

TXĐ : \(D = \left[ { - 2; + \infty } \right)\).

Ta có : \(y' = \dfrac{1}{2} - \dfrac{1}{{2\sqrt {x + 2} }} = \dfrac{{\sqrt {x + 2}  - 1}}{{2\sqrt {x + 2} }}\).

Cho \(y' = 0 \Leftrightarrow \sqrt {x + 2}  - 1 = 0\)\( \Leftrightarrow \sqrt {x + 2}  = 1 \Leftrightarrow x =  - 1 \in \left[ { - 1;34} \right]\).

Lại có : \(y\left( { - 1} \right) =  - \dfrac{3}{2},y\left( {34} \right) = 11\) nên \(m = \mathop {\min }\limits_{\left[ { - 1;34} \right]} y = y\left( { - 1} \right) =  - \dfrac{3}{2};\,\,M = \mathop {\max }\limits_{\left[ { - 1;34} \right]} y = y\left( {34} \right) = 11\).

Vậy \(3m + M = 3.\left( { - \dfrac{3}{2}} \right) + 11 = \dfrac{{13}}{2}\).

Đáp án cần chọn là: A

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com