Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Biết \(\int\limits_0^{\frac{\pi }{4}} {\dfrac{1}{{1 + \tan x}}dx = a.\pi  + b\ln 2} \)  với \(a;\,\,b\) là các

Câu hỏi số 421931:
Vận dụng

Biết \(\int\limits_0^{\frac{\pi }{4}} {\dfrac{1}{{1 + \tan x}}dx = a.\pi  + b\ln 2} \)  với \(a;\,\,b\) là các số hữu tỉ. Tính tỷ số \(\dfrac{a}{b}\).

Đáp án đúng là: A

Quảng cáo

Câu hỏi:421931
Phương pháp giải

Biến đổi hàm số đã cho về \(\dfrac{1}{{1 + \tan x}} = \dfrac{{\cos x}}{{\sin x + \cos x}} = \dfrac{1}{2}\left( {1 + \dfrac{{\cos x - \sin x}}{{\sin x - \cos x}}} \right)\) rồi tính tích phân.

Giải chi tiết

Ta có :

\(\begin{array}{l}\int\limits_0^{\frac{\pi }{4}} {\dfrac{1}{{1 + \tan x}}dx}  = \int\limits_0^{\frac{\pi }{4}} {\dfrac{1}{{1 + \dfrac{{\sin x}}{{\cos x}}}}dx} \\ = \int\limits_0^{\frac{\pi }{4}} {\dfrac{1}{{\dfrac{{\cos x + \sin x}}{{\cos x}}}}dx}  = \int\limits_0^{\frac{\pi }{4}} {\dfrac{{\cos x}}{{\sin x + \cos x}}dx} \\ = \int\limits_0^{\frac{\pi }{4}} {\dfrac{{\sin x + \cos x + \cos x - \sin x}}{{2\left( {\sin x + \cos x} \right)}}dx} \\ = \dfrac{1}{2}\int\limits_0^{\frac{\pi }{4}} {\left( {1 + \dfrac{{\cos x - \sin x}}{{\sin x + \cos x}}} \right)dx} \\ = \dfrac{1}{2}\left[ {x + \int\limits_0^{\frac{\pi }{4}} {\dfrac{{d\left( {\sin x + \cos x} \right)}}{{\sin x + \cos x}}} } \right]\\ = \dfrac{1}{2}\left. {\left( {x + \ln \left| {\sin x + \cos x} \right|} \right)} \right|_0^{\frac{\pi }{4}}\\ = \dfrac{1}{2}\left( {\dfrac{\pi }{4} + \ln \sqrt 2 } \right) = \dfrac{\pi }{8} + \dfrac{1}{2}\ln \sqrt 2 \\ = \dfrac{\pi }{8} + \dfrac{1}{4}\ln 2\\ \Rightarrow a = \dfrac{1}{8},b = \dfrac{1}{4} \Rightarrow \dfrac{a}{b} = \dfrac{1}{2}\end{array}\)

Đáp án cần chọn là: A

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com