Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho hình chóp \(S.ABC\) có đáy là tam giác cân tại \(A\), mặt bên \(\left( {SBC} \right)\) là tam giác

Câu hỏi số 421932:
Vận dụng

Cho hình chóp \(S.ABC\) có đáy là tam giác cân tại \(A\), mặt bên \(\left( {SBC} \right)\) là tam giác đều và nằm trong mặt phẳng vuông góc với đáy. Gọi \(\left( \alpha  \right)\) là mặt phẳng đi qua điểm \(B\) và vuông góc với \(SC\), chia khối chóp thành hai phần. Tính tỉ số thể tích của hai phần đó.

Đáp án đúng là: A

Quảng cáo

Câu hỏi:421932
Phương pháp giải

- Gọi D là trung điểm của BC. Chứng minh \(AD \bot SC\). Từ đó, dựng mặt phẳng \(\left( \alpha  \right)\) với chú ý \(\left( \alpha  \right)//AD\).

- Sử dụng tỉ số thể tích khối chóp \(\dfrac{{{V_{S.A'B'C'}}}}{{{V_{S.ABC}}}} = \dfrac{{SA'}}{{SA}}.\dfrac{{SB'}}{{SB}}.\dfrac{{SC'}}{{SC}}\)

Giải chi tiết

Gọi D là trung điểm của BC ta có \(AD \bot BC\)

Mà \(\left( {SBC} \right) \bot \left( {ABC} \right),AD \subset \left( {ABC} \right)\) nên \(AD \bot \left( {SBC} \right)\)\( \Rightarrow AD \bot SC\)

Lại có \(\left( \alpha  \right) \bot SC \Rightarrow \left( \alpha  \right)//AD\)

Gọi E là trung điểm của SC thì \(BE \bot SC \Rightarrow BE \subset \left( \alpha  \right)\)

Trong mp(SBC), gọi G là giao điểm của BE và AD thì \(G \in BE \subset \left( \alpha  \right)\)

Tròn mp(SAD), qua G kẻ GF//AD (\(F \in SA\)) ta được (BEF) chính là mặt phẳng \(\left( \alpha  \right)\).

Dễ thấy G là trọng tâm tam giác SBC nên \(\dfrac{{SG}}{{SD}} = \dfrac{2}{3}\).

Mà GF//AD nên theo Ta let \(\dfrac{{SF}}{{SA}} = \dfrac{{SG}}{{SD}} = \dfrac{2}{3}\)

Vậy \(\dfrac{{{V_{S.BEF}}}}{{{V_{S.BCA}}}} = \dfrac{{SB}}{{SB}}.\dfrac{{SE}}{{SC}}.\dfrac{{SF}}{{SA}} = 1.\dfrac{1}{2}.\dfrac{2}{3} = \dfrac{1}{3}\).

\(\begin{array}{l} \Rightarrow {V_{S.BEF}} = \dfrac{1}{3}{V_{S.ABC}}\\ \Rightarrow {V_{B.ACEF}} = {V_{S.ABC}} - {V_{S.BEF}}\\ = {V_{S.ABC}} - \dfrac{1}{3}{V_{S.ABC}} = \dfrac{2}{3}{V_{S.ABC}}\\ \Rightarrow \dfrac{{{V_{S.BEF}}}}{{{V_{B.ACEF}}}} = \dfrac{{\dfrac{1}{3}{V_{S.ABC}}}}{{\dfrac{2}{3}{V_{S.ABC}}}} = \dfrac{1}{2}\end{array}\)

Đáp án cần chọn là: A

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com