Cho mặt phẳng \(\left( \alpha \right)\) đi qua hai điểm \(M\left( {4;0;0} \right)\) và \(N\left( {0;0;3}
Cho mặt phẳng \(\left( \alpha \right)\) đi qua hai điểm \(M\left( {4;0;0} \right)\) và \(N\left( {0;0;3} \right)\) sao cho mặt phẳng \(\left( \alpha \right)\) tạo với mặt phẳng \(\left( {Oyz} \right)\) một góc bằng \({60^0}\). Tính khoảng cách từ điểm gốc tọa độ đến mặt phẳng \(\left( \alpha \right)\)
Đáp án đúng là: D
Quảng cáo
Gọi \(\overrightarrow {{n_{\left( \alpha \right)}}} = \left( {a;b;c} \right)\), sử dụng các công thức:
- Tính cos góc giữa hai mặt phẳng \(\cos \alpha = \dfrac{{\left| {\overrightarrow {{n_1}} .\overrightarrow {{n_2}} } \right|}}{{\left| {\overrightarrow {{n_1}} } \right|.\left| {\overrightarrow {{n_2}} } \right|}}\)
- Khoảng cách từ điểm đến mặt phẳng \(d\left( {M,\left( P \right)} \right) = \dfrac{{\left| {a{x_0} + b{y_0} + c{z_0} + d} \right|}}{{\sqrt {{a^2} + {b^2} + {c^2}} }}\)
Đáp án cần chọn là: D
>> 2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com












