Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Tìm số nghiệm \(x\) thuộc \(\left[ {0;100} \right]\) của phương trình sau : \({2^{\cos \pi x - 1}} +

Câu hỏi số 421940:
Vận dụng cao

Tìm số nghiệm \(x\) thuộc \(\left[ {0;100} \right]\) của phương trình sau :

\({2^{\cos \pi x - 1}} + \dfrac{1}{2} = \cos \pi x + {\log _4}\left( {3\cos \pi x - 1} \right)\)

Đáp án đúng là: A

Quảng cáo

Câu hỏi:421940
Phương pháp giải

- Đặt \(t = \cos \pi x\), tìm ĐK của \(t\).

- Sử dụng phương pháp hàm số giải phương trình ẩn \(t\).

- Từ đó suy ra \(x\).

Giải chi tiết

ĐK : \(3\cos \pi x - 1 > 0 \Leftrightarrow \cos \pi x > \dfrac{1}{3}\)

Đặt \(t = \cos \pi x\)\( \Rightarrow \dfrac{1}{3} < \cos \pi x \le 1 \Rightarrow \dfrac{1}{3} < t \le 1\)

Phương trình trở thành \({2^{t - 1}} + \dfrac{1}{2} = t + {\log _4}\left( {3t - 1} \right)\)\( \Leftrightarrow {2^{t - 1}} + \dfrac{1}{2} - t - {\log _4}\left( {3t - 1} \right) = 0\)

Xét hàm số \(f\left( t \right) = {2^{t - 1}} + \dfrac{1}{2} - t - {\log _4}\left( {3t - 1} \right)\) trên \(\left( {\dfrac{1}{3};1} \right]\) có: \(f'\left( t \right) = {2^{t - 1}}\ln 2 - 1 - \dfrac{3}{{\left( {3t - 1} \right)\ln 4}}\)

Do \(t \le 1 \Rightarrow \left\{ \begin{array}{l}{2^{t - 1}} \le 1\\3t - 1 \le 2\end{array} \right.\)\( \Rightarrow f'\left( t \right) < 1.\ln 2 - 1 - \dfrac{3}{{2.\ln 4}} < 0\) với mọi \(t \in \left( {\dfrac{1}{3};1} \right]\).

Do đó hàm số \(f\left( t \right)\) nghịch biến trên \(\left( {\dfrac{1}{3};1} \right]\).

Dễ thất \(f\left( 1 \right) = {2^{1 - 1}} + \dfrac{1}{2} - 1 - {\log _4}2 = 0\) nên phương trình \(f\left( t \right) = 0\) có nghiệm duy nhất \(t = 1\).

\( \Rightarrow \cos \pi x = 1 \Leftrightarrow \pi x = k2\pi  \Leftrightarrow x = 2k\).

Mà \(0 \le x \le 100 \Leftrightarrow 0 \le 2k \le 100 \Leftrightarrow 0 \le k \le 50\) .

Vậy có 51 giá trị nguyên của k ứng với 51 nghiệm.

Đáp án cần chọn là: A

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com