Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Số giá trị nguyên của tham số \(m\) để hàm số \(y =  - \dfrac{1}{3}{x^3} + m{x^2} - \left( {3 + 2m}

Câu hỏi số 422181:
Thông hiểu

Số giá trị nguyên của tham số \(m\) để hàm số \(y =  - \dfrac{1}{3}{x^3} + m{x^2} - \left( {3 + 2m} \right)x - 2020\) nghịch biến trên \(\mathbb{R}\) là:

Đáp án đúng là: A

Quảng cáo

Câu hỏi:422181
Phương pháp giải

- Hàm số nghịch biến khi \(y' \le 0\) \(\forall x \in \mathbb{R}\) và bằng 0 tại hữu hạn điểm.

- Tam thức bậc hai \(f\left( x \right) = a{x^2} + bx + c \le 0\,\,\forall x \in \mathbb{R} \Leftrightarrow \left\{ \begin{array}{l}a < 0\\\Delta  \le 0\end{array} \right.\).

Giải chi tiết

Ta có hàm số \(y =  - \dfrac{1}{3}{x^3} + m{x^2} - \left( {3 + 2m} \right)x - 2020\) nghịch biến khi:

\(\begin{array}{l}y' =  - {x^2} + 2mx - \left( {3 + 2m} \right) \le 0\,\,\forall x \in \mathbb{R}\\ \Leftrightarrow \left\{ \begin{array}{l} - 1 < 0\,\,\,\left( {luon\,\,dung} \right)\\\Delta ' = {m^2} - 3 - 2m \le 0\end{array} \right.\\ \Leftrightarrow  - 1 \le m \le 3\end{array}\)

Mà \(m \in \mathbb{Z} \Rightarrow m \in \left\{ { - 1;0;1;2;3} \right\}\).

Vậy có 5 giá trị của \(m\) thỏa mãn yêu cầu bài toán.

Đáp án cần chọn là: A

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com