Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Một mảnh vườn hình chữ nhật có diện tích \(480{m^2}\). Nếu tăng chiều dài lên \(8m\) và giảm

Câu hỏi số 423155:
Vận dụng

Một mảnh vườn hình chữ nhật có diện tích \(480{m^2}\). Nếu tăng chiều dài lên \(8m\) và giảm chiều rộng đi \(2m\) thì diện tích không đổi. Hãy tính chu vi của mảnh vườn đó.

Đáp án đúng là: C

Quảng cáo

Câu hỏi:423155
Giải chi tiết

Gọi chiều dài và chiều rộng của mảnh vườn lần lượt là \(x,\,\,y\) (mét) (ĐK: \(x > y > 2\)).

Vì diện tích mảnh vườn là \(480{m^2}\) nên ta có phương trình \(xy = 480\,\,\left( 1 \right)\).

Nếu tăng chiều dài lên 8m thì chiều dài mới là \(x + 8\,\,\left( m \right)\).

       giảm chiều rộng đi 2m thì chiều chiều rộng mới là \(y - 2\,\,\left( m \right)\).

Khi đó diện tích mảnh vườn không thy đổi nên ta có phương trình

\(\begin{array}{l}\,\,\,\,\,\left( {x + 8} \right)\left( {y - 2} \right) = 480\\ \Leftrightarrow xy - 2x + 8y - 16 = 480\\ \Leftrightarrow 480 - 2x + 8y - 16 = 480\\ \Leftrightarrow 2x - 8y =  - 16\\ \Leftrightarrow x - 4y =  - 8\,\,\,\left( 2 \right)\end{array}\)

Từ (1) và (2) ta có hệ phương trình:

\(\left\{ \begin{array}{l}xy = 480\\x - 4y =  - 8\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}xy = 480\\x = 4y - 8\end{array} \right.\) \( \Leftrightarrow \left\{ \begin{array}{l}\left( {4y - 8} \right).y = 480\\x = 4y - 8\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}4{y^2} - 8y - 480 = 0\\x = 4y - 8\end{array} \right.\) \( \Leftrightarrow \left\{ \begin{array}{l}{y^2} - 2y - 120 = 0\,\,\left( * \right)\\x = 4y - 8\end{array} \right.\)

Xét phương trình (*) ta có:

\(\begin{array}{l}\,\,\,\,\,\,{y^2} - 2y - 120 = 0\\ \Leftrightarrow {y^2} - 12y + 10y - 120 = 0\\ \Leftrightarrow y\left( {y - 12} \right) + 10\left( {y - 12} \right) = 0\\ \Leftrightarrow \left( {y - 12} \right)\left( {y + 10} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l}y - 12 = 0\\y + 10 = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}y = 12\,\,\,\,\,\,\,\left( {tm} \right)\\y =  - 10\,\,\left( {ktm} \right)\end{array} \right.\end{array}\)

Với \(y = 12\) \( \Rightarrow x = 4.12 - 8 = 40\).

Vậy chu vi của mảnh vườn đó là \(C = 2\left( {x + y} \right) = 2\left( {40 + 12} \right) = 104\,\,\left( m \right)\).

Đáp án cần chọn là: C

PH/HS 2K10 THAM GIA NHÓM ĐỂ CẬP NHẬT ĐIỂM THI, ĐIỂM CHUẨN MIỄN PHÍ!

>> Học trực tuyến lớp 9 và Lộ trình UP10 trên Tuyensinh247.com Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Lộ trình học tập 3 giai đoạn: Học nền tảng lớp 9, Ôn thi vào lớp 10, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả. PH/HS tham khảo chi tiết khoá học tại: Link

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com