Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho hàm số \(f(x) = \left| {{x^3} - 3{x^2} + m} \right|.\) Có bao nhiêu số nguyên m để giá trị nhỏ

Câu hỏi số 423739:
Vận dụng cao

Cho hàm số \(f(x) = \left| {{x^3} - 3{x^2} + m} \right|.\) Có bao nhiêu số nguyên m để giá trị nhỏ nhất của hàm số \(f(x)\) trên đoạn \(\left[ {1\,;\,3} \right]\) không lớn hơn 2020 ?

Đáp án đúng là: A

Quảng cáo

Câu hỏi:423739
Phương pháp giải

- Lập BBT của hàm số \(g\left( x \right) = {x^3} - 3{x^2} + m\) trên \(\left[ {1;3} \right]\).

- Xét các trường hợp của \(m\) và suy ra BBT của hàm số \(f\left( x \right) = \left| {g\left( x \right)} \right|\).

- Trong từng TH tìm GTNN của hàm số trên \(\left[ {1;3} \right]\).

Giải chi tiết

Xét hàm số \(g\left( x \right) = {x^3} - 3{x^2} + m\), trên \(\left[ {1\,;\,3} \right]\) có: \(g'\left( x \right) = 3{x^2} - 6x,\,\,g;\left( x \right) = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0\,\,\left( {ktm} \right)\\x = 2\,\,\left( {tm} \right)\end{array} \right.\).

Ta có: \(g\left( 1 \right) = m - 2,\,\,g\left( 2 \right) = m - 4,\,\,g\left( 3 \right) = m\).

BBT:

TH1: Nếu \(m - 4 \ge 0 \Leftrightarrow m \ge 4\) thì \(\mathop {\min }\limits_{\left[ {1;3} \right]} f\left( x \right) = m - 4 \le 2020 \Rightarrow m \le 2024\).

Kết hợp điều kiện \( \Rightarrow 4 \le m \le 2024\).

Mà \(m \in \mathbb{Z}\) \( \Rightarrow m \in \left\{ {5;6;...2024} \right\}:\) có 2024 – 5 +1 = 2020 giá trị của \(m\) thỏa mãn.

TH2: Nếu \(m - 4 < 0 \le m - 2 \Leftrightarrow 2 \le m < 4\).

Khi đó \(\mathop {\min }\limits_{\left[ {1;3} \right]} f\left( x \right) = \min \left\{ {4 - m;m - 2} \right\}\).

Xét hiệu \(4 - m - m + 2 = 6 - 2m\).

+ Nếu \(6 - 2m < 0 \Leftrightarrow m > 3\), kết hợp điều kiện \( \Rightarrow 3 < m < 4\), không có số nguyên nào thỏa mãn.

+ Nếu \(6 - 2m \ge 0 \Leftrightarrow m \le 3\), kết hợp điều kiện \( \Rightarrow 2 \le m \le 3\), khi đó \(\mathop {\min }\limits_{\left[ {1;3} \right]} f\left( x \right) = m - 2 \le 2020 \Rightarrow m \le 2022\)

Kết hợp điều kiện \( \Rightarrow 2 \le m \le 3\). Mà \(m \in \mathbb{Z} \Rightarrow m \in \left\{ {2;3} \right\}\).

TH3: \(m - 2 < 0 \le m \Leftrightarrow 0 \le m < 2\).

Khi đó \(\mathop {\min }\limits_{\left[ {1;3} \right]} f\left( x \right) = \min \left\{ {2 - m;m} \right\}\).

Xét hiệu \(2 - m - m = 2 - 2m\).

+ Nếu \(2 - 2m < 0 \Leftrightarrow m > 1\), kết hợp điều kiện \( \Rightarrow 1 < m < 2\), không có số nguyên nào thỏa mãn.

+ Nếu \(2 - 2m \ge 0 \Leftrightarrow m \le 1\), kết hợp điều kiện \( \Rightarrow 0 \le m \le 1\), khi đó \(\mathop {\min }\limits_{\left[ {1;3} \right]} f\left( x \right) = m \le 2020\).

Kết hợp điều kiện \( \Rightarrow 0 \le m \le 1\). Mà \(m \in \mathbb{Z} \Rightarrow m \in \left\{ {0;1} \right\}\).

TH3: \(m \le 0\). Khi đó \(\mathop {\min }\limits_{\left[ {1;3} \right]} f\left( x \right) =  - m \le 2020 \Leftrightarrow m \ge  - 2020\).

Kết hợp điều kiện \( \Rightarrow  - 2020 \le m \le 0\).

Kết hợp các trường hợp \( \Rightarrow m \in \left[ { - 2020;2024} \right]\).

Vậy có tất cả 4045 giá trị nguyên của \(m\) thỏa mãn yêu cầu bài toán.

Chọn A.

Đáp án cần chọn là: A

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com