Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Một con lắc đơn gồm vật nhỏ \(m\) treo ở đầu sợi dây không dãn có khối lượng không đáng

Câu hỏi số 423977:
Vận dụng cao

Một con lắc đơn gồm vật nhỏ \(m\) treo ở đầu sợi dây không dãn có khối lượng không đáng kể dao động điều hòa tại nơi có \(g = 10\,\,m/{s^2}\). Người ta tích điện cho vật \(m\) và đặt con lắc vào trong một điện trường đều nằm ngang thì chu kì dao động là \(T\). Nếu quay phương của điện trường trong mặt phẳng thẳng đứng đi một góc \({30^0}\) so với phương ngang thì chu kì dao động của con lắc bằng \(1,987\,\,s\) hoặc \(1,147\,\,s\). Giá trị của chu kì \(T\) bằng

Đáp án đúng là: B

Quảng cáo

Câu hỏi:423977
Phương pháp giải

Gia tốc hiệu dụng của con lắc khi ngoại lực hướng theo phương ngang: \({g_0} = \sqrt {{g^2} + {a^2}} \)

Gia tốc hiệu dụng của con lắc khi ngoại lực hợp với phương thẳng đứng góc β:

\(g' = \sqrt {{g^2} + {a^2} - 2g.a.cos\beta } \)

Chu kì của con lắc đơn: \(T = 2\pi \sqrt {\dfrac{{\rm{l}}}{g}} \)

Giải chi tiết

Nhận xét: \(T = 2\pi \sqrt {\dfrac{{\rm{l}}}{g}}  \Rightarrow {T^2} = 4{\pi ^2}\dfrac{{\rm{l}}}{g} \Rightarrow {T^2} \sim \dfrac{1}{g}\) hay \(g \sim \dfrac{1}{{{T^2}}}\)

Ban đầu \(\overrightarrow F \) theo phương ngang, gia tốc hiệu dụng: \({g_0} = \sqrt {{g^2} + {a^2}} \)

Trường hợp 1: \(\overrightarrow F \) hướng lên trên:

Ta có: \(\beta  = {90^0} - \alpha  \Rightarrow \cos \beta  =  - \sin \alpha \)

Gia tốc hiệu dụng là: \({g_1} = \sqrt {{g^2} + {a^2} + 2g.a.\sin \alpha }  \Rightarrow {g_1}^2 = {g^2} + {a^2} + 2g.a.\sin \alpha \,\,\left( 1 \right)\)

Trường hợp 2: \(\overrightarrow F \) hướng xuống dưới:

Ta có:  \(\beta  = {90^0} + \alpha  \Rightarrow \cos \beta  = \sin \alpha \)

Gia tốc hiệu dụng là: \({g_2} = \sqrt {{g^2} + {a^2} - 2g.a.\sin \alpha }  \Rightarrow {g_2}^2 = {g^2} + {a^2} - 2g.a.\sin \alpha \,\,\left( 2 \right)\)

Từ (1) và (2) ta có: \({g_1}^2 + {g_2}^2 = 2\left( {{g^2} + {a^2}} \right)\)

\( \Rightarrow \dfrac{1}{{{T_1}^4}} + \dfrac{1}{{{T_2}^4}} = \dfrac{2}{{{T_0}^4}} \Rightarrow \dfrac{1}{{1,{{987}^4}}} + \dfrac{1}{{1,{{147}^4}}} = \dfrac{2}{{{T_0}^4}} \Rightarrow {T_0} \approx 1,329\,\,\left( s \right)\)

Đáp án cần chọn là: B

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com