Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho hình chóp \(S.ABCD\) có đáy là hình thang vuông \(\left( {\angle A = \angle D = {{90}^0}} \right)\), \(AD =

Câu hỏi số 425738:
Vận dụng

Cho hình chóp \(S.ABCD\) có đáy là hình thang vuông \(\left( {\angle A = \angle D = {{90}^0}} \right)\), \(AD = DC = 2a\), \(AB = a\). \(SA\) vuông góc vuông góc với mặt phẳng đáy đồng thời \(SB\) tạo với đáy một góc \({60^0}\). Tính góc giữa hai thẳng \(SB\) và \(DC\).

Đáp án đúng là: A

Quảng cáo

Câu hỏi:425738
Phương pháp giải

- Xác định góc giữa \(SB\) và \(\left( {ABCD} \right)\) là góc giữa \(SB\) và hình chiếu của \(SB\) lên \(\left( {ABCD} \right)\).

- Đặt hệ trục tọa độ \(D \equiv O\), xác định tọa độ các điểm.

- Sử dụng công thức \(\cos \alpha  = \cos \left( {SB;DC} \right) = \dfrac{{\left| {\overrightarrow {SB} .\overrightarrow {DC} } \right|}}{{\left| {\overrightarrow {SB} } \right|.\left| {\overrightarrow {DC} } \right|}}\).

Giải chi tiết

Ta có: \(SA \bot \left( {ABCD} \right)\) \( \Rightarrow AB\) là hình chiếu vuông góc của \(SB\) lên \(\left( {ABCD} \right)\).

\( \Rightarrow \angle \left( {SB;\left( {ABCD} \right)} \right) = \angle \left( {SB;AB} \right) = \angle SBA = {60^0}\).

\( \Rightarrow SA = AB.\tan {60^0} = a\sqrt 3 \).

Đặt hệ trục tọa độ như hình vẽ ta có: \(D\left( {0;0;0} \right)\), \(A\left( {0;2a;0} \right)\), \(B\left( {2a;2a;0} \right)\), \(C\left( {2a;0;0} \right)\), \(S\left( {0;2a;a\sqrt 3 } \right)\).

Ta có:

\(\overrightarrow {SB}  = \left( {2a;0; - a\sqrt 3 } \right)\), \(\overrightarrow {DC}  = \left( {2a;0;0} \right)\).

Đặt \(\cos \alpha  = \cos \left( {SB;DC} \right)\) ta có:

\(\cos \alpha  = \dfrac{{\left| {\overrightarrow {SB} .\overrightarrow {DC} } \right|}}{{\left| {\overrightarrow {SB} } \right|.\left| {\overrightarrow {DC} } \right|}} = \dfrac{{\left| {2{a^2}} \right|}}{{\sqrt {4{a^2}} .\sqrt {4{a^2}} }} = \dfrac{1}{2} \Rightarrow \alpha  = {60^0}\).

Vậy góc giữa hai đường thẳng \(SB\) và \(DC\) bằng \({60^0}\).

Đáp án cần chọn là: A

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com