Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc ĐGNL Hà Nội, ĐGNL HCM - Ngày 17-18/01/2026
↪ ĐGNL Hà Nội (HSA) - Trạm 3 ↪ ĐGNL HCM (V-ACT) - Trạm 3
Giỏ hàng của tôi

Gọi \(S\) là tập hợp tất cả các số tự nhiên có \(4\) chữ số đôi một khác nhau và các chữ

Câu hỏi số 427091:
Vận dụng

Gọi \(S\) là tập hợp tất cả các số tự nhiên có \(4\) chữ số đôi một khác nhau và các chữ số thuộc tập hợp \(\left\{ {1,2,3,4,5,6,7} \right\}\). Chọn ngẫu nhiên một số thuộc \(S\), xác suất để số đó không có hai chữ số liên tiếp nào cùng chẵn bằng

Đáp án đúng là: C

Quảng cáo

Câu hỏi:427091
Phương pháp giải

Để xác định số phần tử của biến cố \(A\):“số được chọn không có hai chữ số liên tiếp nào cùng chẵn”.

Ta chia thành 3 trường hợp:

TH1: Số được chọn có \(4\) chữ số đều là số lẻ

TH2: Số được chọn có \(1\) chữ số chẵn và \(3\) chữ số lẻ

TH3: Số được chọn có \(2\) chữ số chẵn và 2 chữ số lẻ.

Sử dụng: \(P\left( A \right) = \dfrac{{n\left( A \right)}}{{n\left( \Omega  \right)}}\)  với \(n\left( A \right),n\left( \Omega  \right)\) lần lượt là số phần tử của biến cố A và số phần tử của không gian mẫu.

Giải chi tiết

Số tự nhiên có \(4\) chữ số khác nhau là \({\rm{A}}_7^4 = 840 \Rightarrow n\left( S \right) = 840\).

Xét phép thử: “Chọn ngẫu nhiên một số thuộc \(S\)”. Ta có: \(n\left( \Omega  \right) = {\rm{C}}_{840}^1 = 840\).

Biến cố \(A\):“số được chọn không có hai chữ số liên tiếp nào cùng chẵn”.

+ Trường hợp 1: Số được chọn có \(4\) chữ số đều là số lẻ, có \(4! = 24\)cách chọn.

+ Trường hợp 2: Số được chọn có \(1\) chữ số chẵn và \(3\) chữ số lẻ

Có \(C_3^1\) cách chọn 1 chữ số chẵn và \(C_4^3\) cách chọn 3 chữ số lẻ. Đồng thời có \(4!\) cách sắp xếp 4 số được chọn nên có \({\rm{C}}_3^1.{\rm{C}}_4^3.4! = 288\) cách chọn thỏa mãn.

+ Trường hợp 3: Số được chọn có \(2\) chữ số chẵn và 2 chữ số lẻ.

* Chọn 2 số chẵn, 2 số lẻ trong tập hợp \(\left\{ {1;\,2;\,3;\,4;\,5;\,6;\,7} \right\}\) có \(C_3^2.C_4^2\) cách.

Với mỗi bộ 2 số chẵn và 2 số lẻ được chọn, để hai số chẵn không đứng cạnh nhau thì ta có các trường hợp CLCL, CLLC, LCLC. Với mỗi trường hợp trên ta có \(2!\) cách sắp xếp 2 số lẻ và \(2!\) cách sắp xếp các số chẵn nên có \(3.2!.2!\) số thỏa mãn

* Suy ra trường hợp 3 có \(C_3^2.C_4^2.12 = 216\) cách chọn.

Suy ra \(n\left( A \right) = 24 + 288 + 216 = 528\).

Vậy xác suất cần tìm \({\rm{P}}\left( A \right) = \dfrac{{n\left( A \right)}}{{n\left( \Omega  \right)}} = \dfrac{{528}}{{840}} = \dfrac{{22}}{{35}}\).

Đáp án cần chọn là: C

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com