Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho hàm số bậc bốn \(y = f\left( x \right)\) có đồ thị là đường cong trong hình bên. Số nghiệm

Câu hỏi số 427102:
Vận dụng cao

Cho hàm số bậc bốn \(y = f\left( x \right)\) có đồ thị là đường cong trong hình bên. Số nghiệm thực phân biệt của phương trình \(f\left( {{x^2}f\left( x \right)} \right) + 2 = 0\) là

Đáp án đúng là: D

Quảng cáo

Câu hỏi:427102
Phương pháp giải

Số giao điểm của hai đồ thị hàm số \(y = f\left( x \right)\) và \(y = g\left( x \right)\) là số nghiệm của phương trình \(f\left( x \right) = g\left( x \right)\)

Giải chi tiết

\( \Leftrightarrow f\left( {{x^2}f\left( x \right)} \right) =  - 2\)\( \Leftrightarrow \left[ \begin{array}{l}{x^2}f\left( x \right) = 0\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( 1 \right)\\{x^2}f\left( x \right) = c \in \left( {0\,;\,1} \right)\,\,\,\,\,\,\,\,\,\left( 2 \right)\\{x^2}f\left( x \right) = d \in \left( {2\,;\,3} \right)\,\,\,\,\,\,\,\,\left( 3 \right)\\{x^2}f\left( x \right) = e \in \left( {3\,;\,4} \right)\,\,\,\,\,\,\,\,\,\left( 4 \right)\end{array} \right.\).

\(\left( 1 \right) \Leftrightarrow \left[ \begin{array}{l}x = 0\\f\left( x \right) = 0\end{array} \right.\)\( \Leftrightarrow \left[ \begin{array}{l}x = 0\,\\x = a \in \left( { - 1\,;\,0} \right)\\x = b \in \left( {e\,;\,4} \right)\end{array} \right.\).

Do \(c \in \left( {0\,;\,1} \right)\) nên từ phương trình  \({x^2}f(x) = c\) suy ra \(x \ne 0\). Từ đó \(\left( 2 \right) \Leftrightarrow f\left( x \right) = \dfrac{c}{{{x^2}}},\,\,c \in \left( {0\,;\,1} \right)\).

Đồ thị hàm số \(y = \dfrac{c}{{{x^2}}}\) cắt đồ thị hàm số \(y = f\left( x \right)\)  tại hai điểm phân biệt nên phương trình \(\left( 2 \right)\) có hai nghiệm phân biệt.

Tương tự, mỗi phương trình \(\left( 3 \right)\), \(\left( 4 \right)\) đều có hai nghiệm phân biệt.

Do các số \(0,\,\,c,\,\,d,\,\,e\) đôi một khác nhau nên các phương trình \(\left( 1 \right)\), \(\left( 2 \right)\), \(\left( 3 \right)\), \(\left( 4 \right)\) đôi một không có nghiệm chung.

Vậy phương trình \(f\left( {{x^2}f\left( x \right)} \right) + 2 = 0\) có 9 nghiệm phân biệt.

Chọn D.

Đáp án cần chọn là: D

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com