Biết hệ số của \({x^{n - 2}}\) trong khai triển \({\left( {x - \dfrac{1}{4}} \right)^n}\) bằng 31. Tìm
Biết hệ số của \({x^{n - 2}}\) trong khai triển \({\left( {x - \dfrac{1}{4}} \right)^n}\) bằng 31. Tìm \(n\,\,\left( {n \in \mathbb{N}} \right)\).
Đáp án đúng là: A
Quảng cáo
Sử dụng công thức khai triển \({\left( {a + b} \right)^n} = \sum\limits_{k = 0}^n {C_n^k{a^k}{b^{n - k}}} \), từ đó tìm hệ số của \({x^{n - 2}}\).
Giải phương trình hệ số của \({x^{n - 2}}\) bằng 31, tìm \(n\).
Đáp án cần chọn là: A
>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com












