Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Giá trị cực đại \({y_{CD}}\) của hàm số \(y = {x^3} - 12x + 20\) là:

Câu hỏi số 434741:
Nhận biết

Giá trị cực đại \({y_{CD}}\) của hàm số \(y = {x^3} - 12x + 20\) là:

Đáp án đúng là: B

Quảng cáo

Câu hỏi:434741
Phương pháp giải

- Hàm số \(y = f\left( x \right)\) đạt cực đại đại điểm \(x = {x_0}\) khi và chỉ khi \(\left\{ \begin{array}{l}f'\left( {{x_0}} \right) = 0\\f''\left( {{x_0}} \right) < 0\end{array} \right.\) (hàm đa thức bậc ba).

- Thay điểm cực đại của hàm số vào hàm số để tìm giá trị cực đại.

Giải chi tiết

Ta có: \(\left\{ \begin{array}{l}y' = 3{x^2} - 12x\\y'' = 6x - 12\end{array} \right.\).

Xét hệ \(\left\{ \begin{array}{l}y' = 0\\y'' < 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}3{x^2} - 12x = 0\\6x - 12 < 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x =  \pm 2\\x < 2\end{array} \right. \Rightarrow x =  - 2\) là điểm cực đại của hàm số.

Ta có: \({y_{CD}} = y\left( { - 2} \right) = {\left( { - 2} \right)^3} - 12.\left( { - 2} \right) + 20 = 36\).

Chọn B.

Đáp án cần chọn là: B

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com