Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Giỏ hàng của tôi

Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là tứ giác lồi. Gọi \(O\)là giao điểm của \(AC\) và

Câu hỏi số 435062:
Nhận biết

Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là tứ giác lồi. Gọi \(O\)là giao điểm của \(AC\) và \(BD\), \(M\)là giao điểm của \(AB\) và \(CD\), \(N\) là giao điểm của \(AD\) và \(BC\). Giao tuyến của hai mặt phẳng \(\left( {SAB} \right)\) và \(\left( {SCD} \right)\) là?

Đáp án đúng là: C

Quảng cáo

Câu hỏi:435062
Phương pháp giải

Xác định hai điểm chung của hai mặt phẳng.

Giải chi tiết

Xét \(\left( {SAB} \right)\) và \(\left( {SCD} \right)\) có:

+ \(S\) là điểm chung thứ nhất.

+ \(M = AB \cap CD \Rightarrow \left\{ {\begin{array}{*{20}{l}}{M \in AB \subset \left( {SAB} \right) \Rightarrow M \in \left( {SAB} \right)}\\{M \in CD \subset \left( {SCD} \right) \Rightarrow M \in \left( {SCD} \right)}\end{array}} \right.\)

\( \Rightarrow M \in \left( {SAB} \right) \cap \left( {SCD} \right) \Rightarrow M\)  là điểm chung thứ hai.

Vậy \(\left( {SAB} \right) \cap \left( {SCD} \right) = SM\).

Đáp án cần chọn là: C

Group 2K9 ôn Thi ĐGNL & ĐGTD Miễn Phí

>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com