Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho hai số \(a\) và \(b\) là hai số thực dương thỏa mãn \({9^{{{\log }_3}\left( {{a^2}b} \right)}} =

Câu hỏi số 439307:
Thông hiểu

Cho hai số \(a\) và \(b\) là hai số thực dương thỏa mãn \({9^{{{\log }_3}\left( {{a^2}b} \right)}} = 4{a^3}\). Giá trị của biểu thức \(a{b^2}\) bằng

Đáp án đúng là: A

Quảng cáo

Câu hỏi:439307
Phương pháp giải

Giải phương trình mũ: \({a^{f\left( x \right)}} = {a^m} \Leftrightarrow f\left( x \right) = m.\)

Giải phương trình logarit: \({\log _a}f\left( x \right) = b \Leftrightarrow \left\{ \begin{array}{l}f\left( x \right) > 0\\0 < a \ne 1\\f\left( x \right) = {a^b}\end{array} \right..\)

Giải chi tiết

Ta có: \({9^{{{\log }_3}\left( {{a^2}b} \right)}} = 4{a^3} \Leftrightarrow {3^{{{\log }_3}{{\left( {{a^2}b} \right)}^2}}} = 4{a^3}\) \( \Leftrightarrow {\left( {{a^2}b} \right)^2} = 4{a^3} \Leftrightarrow a{b^2} = 4\)

Đáp án cần chọn là: A

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com