Cho hàm số \(y = f\left( x \right)\) có đạo hàm liên tục trên \(\mathbb{R}\) và có đồ thị hàm số
Cho hàm số \(y = f\left( x \right)\) có đạo hàm liên tục trên \(\mathbb{R}\) và có đồ thị hàm số \(y = f'\left( x \right)\) như hình vẽ bên dưới. Xét hàm số \(g\left( x \right) = f\left( {{x^2} - 3} \right)\) và các mệnh đề sau:
I. Hàm số \(g\left( x \right)\) có \(3\) điểm cực trị.
II. Hàm số \(g\left( x \right)\) đạt cực tiểu tại \(x = 0.\)
III. Hàm số \(g\left( x \right)\) đạt cực đại tại \(x = 2.\)
IV. Hàm số \(g\left( x \right)\) đồng biến trên khoảng \(\left( { - 2;\,\,0} \right).\)
V. Hàm số \(g\left( x \right)\) nghịch biến trên khoảng \(\left( { - 1;\,\,1} \right).\)
Có bao nhiêu mệnh đề đúng trong các mệnh đề trên?
Đáp án đúng là: D
Quảng cáo
Ta có: \(x = {x_0}\) là điểm cực trị của hàm số \(y = f\left( x \right) \Leftrightarrow \) tại điểm \(x = {x_0}\) thì hàm số có \(y'\) đổi dấu từ dương sang âm hoặc ngược lại.
Điểm \(x = {x_0}\) là điểm cực tiểu của hàm số \(y = f\left( x \right) \Leftrightarrow \) tại điểm \(x = {x_0}\) thì hàm số có \(y'\) đổi dấu từ âm sang dương.
Điểm \(x = {x_0}\) là điểm cực đại của hàm số \(y = f\left( x \right) \Leftrightarrow \) tại điểm \(x = {x_0}\) thì hàm số có \(y'\) đổi dấu từ dương sang âm.
Hàm số \(y = f\left( x \right)\) nghịch biến trên \(\left( {a;\;b} \right) \Leftrightarrow f'\left( x \right) \le 0\;\;\forall x \in \left( {a;\;b} \right).\)
Hàm số \(y = f\left( x \right)\) đồng biến trên \(\left( {a;\;b} \right) \Leftrightarrow f'\left( x \right) \ge 0\;\;\forall x \in \left( {a;\;b} \right).\)
Đáp án cần chọn là: D
>> 2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com












