Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh \(a\). Hai mặt bên SAB, SCD là các tam giác đều.
Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh \(a\). Hai mặt bên SAB, SCD là các tam giác đều. Gọi G là trọng tâm tam giác SAB, E là điểm di động trên đoạn thẳng BG (E khác B). Cho mp\(\left( \alpha \right)\) qua E, song song với SA và BC.
a) Chứng minh rằng đường thẳng AD song song với mp\(\left( \alpha \right)\) . Tìm giao điểm M, N, P, Q của mp(a) với các cạnh SB, SC, DC, BA.
b) Gọi I là giao điểm của QM và PN. Chứng minh I nằm trên một đường thẳng cố định khi điểm E di động trên đoạn BG.
c) Chứng minh tam giác IPQ là tam giác đều. Tính diện tích tam giác IPQ theo \(a\).
Quảng cáo
>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com













