Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Hai dòng điện cùng chiều cường độ \({I_1} = {I_2} = 10\,\,A\) chạy trong hai dây dẫn thẳng song

Câu hỏi số 450966:
Vận dụng cao

Hai dòng điện cùng chiều cường độ \({I_1} = {I_2} = 10\,\,A\) chạy trong hai dây dẫn thẳng song song dài vô hạn, được đặt trong chân không cách nhau một khoảng \(a = 10\,\,cm\). Một điểm \(M\) cách đều hai dòng điện một khoảng \(x\). Để cảm ứng từ tổng hợp tại \(M\) đạt giá trị lớn nhất thì \(x\) có giá trị là bao nhiêu? Giá trị cảm ứng từ cực đại \({B_{max}}\) khi đó là bao nhiêu?

Đáp án đúng là: B

Quảng cáo

Câu hỏi:450966
Phương pháp giải

Cảm ứng từ do dòng điện thẳng gây ra: \(B = {2.10^{ - 7}}\frac{I}{r}\)

Nguyên lí chồng chất từ trường: \(\overrightarrow B  = \overrightarrow {{B_1}}  + \overrightarrow {{B_2}}  + ...\)

Giải chi tiết

Ta có hình vẽ:

Cảm ứng từ do mỗi dòng điện gây ra là:

\({B_1} = {B_2} = {2.10^{ - 7}}\frac{I}{x}\)

Từ hình vẽ ta thấy: \(B = 2{B_1}\cos \alpha \)

Lại có: \(\cos \alpha  = \frac{{\sqrt {{x^2} - {{\left( {\frac{a}{2}} \right)}^2}} }}{x} = \frac{{\sqrt {{x^2} - \frac{{{a^2}}}{4}} }}{x}\)

\( \Rightarrow B = {2.2.10^{ - 7}}I.\frac{{\sqrt {{x^2} - \frac{{{a^2}}}{4}} }}{{{x^2}}}\)

Xét hàm số: \(y = \frac{{\sqrt {{x^2} - \frac{{{a^2}}}{4}} }}{{{x^2}}} = \sqrt {\frac{1}{{{x^2}}} - \frac{{{a^2}}}{{4{x^4}}}} \)

Ta có: \({y^2} = \frac{1}{{{x^2}}} - \frac{{{a^2}}}{{4{x^4}}} =  - {\left( {\frac{a}{2}} \right)^2}.{\left( {\frac{1}{{{x^2}}}} \right)^2} + 2.\frac{a}{2}.\frac{1}{a}.\frac{1}{{{x^2}}} - {\left( {\frac{1}{a}} \right)^2} + {\left( {\frac{1}{a}} \right)^2}\)

\( \Rightarrow {y^2} =  - {\left( {\frac{a}{2}.\frac{1}{{{x^2}}} - \frac{1}{a}} \right)^2} + \frac{1}{{{a^2}}}\)

Mà \({\left( {\frac{a}{2}.\frac{1}{{{x^2}}} - \frac{1}{a}} \right)^2} \ge 0 \Rightarrow  - {\left( {\frac{a}{2}.\frac{1}{{{x^2}}} - \frac{1}{a}} \right)^2} + \frac{1}{{{a^2}}} \le \frac{1}{{{a^2}}}\)

\( \Rightarrow {\left( {{y^2}} \right)_{\max }} = \frac{1}{{{a^2}}} \Rightarrow {y_{\max }} = \frac{1}{a}\)

khi \(\frac{a}{2}.\frac{1}{{{x^2}}} - \frac{1}{a} = 0 \Rightarrow \frac{1}{{{x^2}}} = \frac{2}{{{a^2}}} \Rightarrow x = \frac{a}{{\sqrt 2 }} = 5\sqrt 2 \,\,\left( {cm} \right)\)

\( \Rightarrow {B_{\max }} = {2.2.10^{ - 7}}I.{y_{\max }} = {2.2.10^{ - 7}}.I.\sqrt {\frac{1}{{{a^2}}}}  = {4.10^{ - 5}}\,\,\left( T \right)\)

Đáp án cần chọn là: B

Group 2K9 ôn Thi ĐGNL & ĐGTD Miễn Phí

>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com