Hình giải tích trong không gian
Trong không gian tọa độ Oxyz, cho mặt cầu
(S): x2+ y2 + z2 - 6x - 8y - 2z + 23 = 0 và mặt phẳng (P): x + y - z + 3 = 0.
Tìm trên (S) điểm M sao cho khoảng cách từ M đến (P) là lớn nhất. Khi đó hãy viết phương trình mặt cầu có tâm M và cắt (P) theo một đường tròn có bán kính bằng 4.
Đáp án đúng là: A
Quảng cáo
Đáp án cần chọn là: A
>> 2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com




∪ 
=
= 8










