Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho hàm số \(f\left( x \right)\) liên tục trên \(\left( {0; + \infty } \right)\) và thỏa mãn \(2f\left( x

Câu hỏi số 457179:
Vận dụng

Cho hàm số \(f\left( x \right)\) liên tục trên \(\left( {0; + \infty } \right)\) và thỏa mãn \(2f\left( x \right) + xf\left( {\dfrac{1}{x}} \right) = x\) với mọi \(x > 0\). Tính \(\int\limits_{\frac{1}{2}}^2 {f\left( x \right)dx} \).

Đáp án đúng là: D

Quảng cáo

Câu hỏi:457179
Phương pháp giải

- Thay \(x = \dfrac{1}{t}\), sau đó rút \(f\left( {\dfrac{1}{x}} \right)\) theo \(f\left( x \right)\) và thế vào giả thiết.

- Tìm \(f\left( x \right)\) theo \(x\) và tính \(\int\limits_{\frac{1}{2}}^2 {f\left( x \right)dx} \) bằng phương pháp tích phân 2 vế.

Giải chi tiết

Ta có:  \(2f\left( x \right) + xf\left( {\dfrac{1}{x}} \right) = x\), với \(x = \dfrac{1}{t}\) ta có \(2f\left( {\dfrac{1}{t}} \right) + \dfrac{1}{t}f\left( t \right) = \dfrac{1}{t}\) \( \Rightarrow f\left( {\dfrac{1}{t}} \right) = \dfrac{1}{2}\left( {\dfrac{1}{t} - \dfrac{1}{t}f\left( t \right)} \right)\)

\( \Rightarrow f\left( {\dfrac{1}{x}} \right) = \dfrac{1}{2}\left( {\dfrac{1}{x} - \dfrac{1}{x}f\left( x \right)} \right)\) 

Khi đó ta có

\(\begin{array}{l}2f\left( x \right) + \dfrac{1}{2}x\left( {\dfrac{1}{x} - \dfrac{1}{x}f\left( x \right)} \right) = x\\ \Leftrightarrow 2f\left( x \right) + \dfrac{1}{2} - \dfrac{1}{2}f\left( x \right) = x\\ \Leftrightarrow \dfrac{3}{2}f\left( x \right) = x - \dfrac{1}{2}\\ \Leftrightarrow \dfrac{3}{2}\int\limits_{\frac{1}{2}}^2 {f\left( x \right)dx}  = \int\limits_{\frac{1}{2}}^2 {\left( {x - \frac{1}{2}} \right)dx} \\ \Leftrightarrow \dfrac{3}{2}\int\limits_{\frac{1}{2}}^2 {f\left( x \right)dx}  = \dfrac{9}{8} \Leftrightarrow \int\limits_{\frac{1}{2}}^2 {f\left( x \right)dx}  = \dfrac{3}{4}\end{array}\)

Đáp án cần chọn là: D

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com