Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho hình chóp \(S.ABC\) có \(AB = 3a,\,\,BC = 4a,\,\,CA = 5a\), các mặt bên tạo với đáy góc \({60^0}\),

Câu hỏi số 457184:
Vận dụng

Cho hình chóp \(S.ABC\) có \(AB = 3a,\,\,BC = 4a,\,\,CA = 5a\), các mặt bên tạo với đáy góc \({60^0}\), hình chiếu vuông góc của \(S\) lên mặt phẳng \(\left( {ABC} \right)\) thuộc miền trong tam giác \(ABC\). Tính thể tích hình chóp \(S.ABC\).

Đáp án đúng là: A

Quảng cáo

Câu hỏi:457184
Phương pháp giải

- Gọi \(H\) là hình chiếu của \(S\) thuộc miền trong tam giác \(ABC\), chứng minh \(H\) là tâm đường tròn nội tiếp \(\Delta ABC\).

- Xác định góc giữa hai mặt phẳng là góc giữa hai đường thẳng lần lượt thuộc hai mặt phẳng và cùng vuông góc với giao tuyến của hai mặt phẳng đó.

- Sử dụng công thức tính bán kính đường tròn nội tiếp tam giác \(r = \dfrac{S}{p}\), với \(S,\,\,p\) lần lượt là diện tích và nửa chu vi tam giác.

- Sử dụng tỉ số lượng giác của góc nhọn trong tam giác vuông tính chiều cao khối chóp.

- Tính thể tích khối chóp \({V_{S.ABC}} = \dfrac{1}{3}SH.{S_{\Delta ABC}}\).

Giải chi tiết

Vì chóp \(S.ABC\) có các mặt bên tạo với đáy các góc bằng nhau và hình chiếu của \(S\) thuộc miền trong tam giác \(ABC\) nên hình chiếu của \(S\) là tâm đường tròn nội tiếp \(\Delta ABC\).

Gọi \(H\) là tâm đường tròn nội tiếp \(\Delta ABC\) \( \Rightarrow SH \bot \left( {ABC} \right)\).

Xét \(\Delta ABC\) có \(A{B^2} + B{C^2} = C{A^2} = 25{a^2}\) nên \(\Delta ABC\) vuông tại \(B\) (định lí Pytago đảo).

Trong \(\left( {ABC} \right)\) kẻ \(HK//BC\,\,\left( {K \in AB} \right)\) ta có \(\left\{ \begin{array}{l}AB \bot SH\\AB \bot HK\end{array} \right. \Rightarrow AB \bot \left( {SHK} \right) \Rightarrow AB \bot SK\).

\(\left\{ \begin{array}{l}\left( {SAB} \right) \cap \left( {ABC} \right) = AB\\SK \subset \left( {SAB} \right);\,\,SK \bot AB\\HK \subset \left( {ABC} \right);\,\,HK \bot AB\end{array} \right.\) \( \Rightarrow \angle \left( {\left( {SAB} \right);\left( {ABC} \right)} \right) = \angle \left( {SK;HK} \right) = \angle SKH = {60^0}\).

Vì \(HK\) là bán kính đường tròn nội tiếp \(\Delta ABC\) nên \(HK = \dfrac{{{S_{\Delta ABC}}}}{{{p_{\Delta ABC}}}} = \dfrac{{\dfrac{1}{2}.3a.4a}}{{\dfrac{{3a + 4a + 5a}}{2}}} = a\).

Xét tam giác vuông \(SHK\) ta có \(SH = HK.\tan {60^0} = a\sqrt 3 \).

Vậy \({V_{S.ABC}} = \dfrac{1}{3}SH.{S_{\Delta ABC}} = \dfrac{1}{3}a\sqrt 3 .\dfrac{1}{2}.3a.4a = 2\sqrt 3 {a^3}\).

Đáp án cần chọn là: A

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com