Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Trong mặt phẳng với hệ trục tọa độ \(Oxy\), đường thẳng đi qua \(A\left( {0;\,\,1} \right)\)

Câu hỏi số 461730:
Thông hiểu

Trong mặt phẳng với hệ trục tọa độ \(Oxy\), đường thẳng đi qua \(A\left( {0;\,\,1} \right)\) tạo với đường thẳng \(d:3x - 2y - 5 = 0\) một góc bằng \({45^0}\) có hệ số góc \(k\) là

Đáp án đúng là: B

Quảng cáo

Câu hỏi:461730
Phương pháp giải

Gọi \(d':y = kx + a\) là đường thẳng cần tìm.

Sử dụng công thức tính góc giữa hai đường thẳng: \(\cos \left( {d,\,\,d'} \right) = \dfrac{{\left| {{{\vec n}_d}.{{\vec n}_{d'}}} \right|}}{{\left| {{{\vec n}_d}} \right|.\left| {{{\vec n}_{d'}}} \right|}}\)

Giải chi tiết

Gọi \(d':y = kx + a\) là đường thẳng cần tìm.

Vì \(d'\) đi qua \(A\left( {0;\,\,1} \right)\) nên ta có: \(1 = k.0 + a \Leftrightarrow a = 1\)

Ta có:

\(d:3x - 2y - 5 = 0\)\( \Rightarrow {\vec n_d} = \left( {3;\,\, - 2} \right)\)

\(d':kx - y + 1 = 0\)\( \Rightarrow {\vec n_{d'}} = \left( {k;\,\, - 1} \right)\)

Theo đề bài, ta có:

\(\cos \left( {d,\,\,d'} \right) = \cos {45^0} = \dfrac{{\left| {{{\vec n}_d}.{{\vec n}_{d'}}} \right|}}{{\left| {{{\vec n}_d}} \right|.\left| {{{\vec n}_{d'}}} \right|}}\)\( = \dfrac{{\left| {3.k + \left( { - 2} \right).\left( { - 1} \right)} \right|}}{{\sqrt {{3^2} + {{\left( { - 2} \right)}^2}} .\sqrt {{k^2} + 1} }}\)

\(\begin{array}{l} \Leftrightarrow \dfrac{{\sqrt 2 }}{2} = \dfrac{{\left| {3.k + \left( { - 2} \right).\left( { - 1} \right)} \right|}}{{\sqrt {{3^2} + {{\left( { - 2} \right)}^2}} .\sqrt {{k^2} + 1} }}\\ \Leftrightarrow \dfrac{{\sqrt 2 }}{2} = \dfrac{{\left| {3k + 2} \right|}}{{\sqrt {13\left( {{k^2} + 1} \right)} }}\\ \Leftrightarrow \dfrac{2}{4} = \dfrac{{9{k^2} + 12k + 4}}{{13{k^2} + 13}}\\ \Leftrightarrow 26{k^2} + 26 = 36{k^2} + 48k + 16\\ \Leftrightarrow 10{k^2} + 48k - 10 = 0\\ \Leftrightarrow \left( {k + 5} \right)\left( {5k - 1} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l}k + 5 = 0\\5k - 1 = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}k =  - 5\\k = \dfrac{1}{5}\end{array} \right.\end{array}\)

Chọn B.

Đáp án cần chọn là: B

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

>> Học trực tuyến Lớp 10 cùng thầy cô giáo giỏi tại Tuyensinh247.com, (Xem ngay) Cam kết giúp học sinh học tốt, bứt phá điểm 9,10 chỉ sau 3 tháng, làm quen kiến thức, định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 10

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com