Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho \(a\) là một số thực khác 0. Tính \(\mathop {\lim }\limits_{x \to a} \dfrac{{{x^4} - {a^4}}}{{x -

Câu hỏi số 461996:
Thông hiểu

Cho \(a\) là một số thực khác 0. Tính \(\mathop {\lim }\limits_{x \to a} \dfrac{{{x^4} - {a^4}}}{{x - a}}\).

Đáp án đúng là: C

Quảng cáo

Câu hỏi:461996
Phương pháp giải

- Sử dụng hằng đẳng thức.

- Rút gọn để khử dạng 0/0 và tính giới hạn.

Giải chi tiết

Ta có:

\(\begin{array}{l}\,\,\,\,\,\mathop {\lim }\limits_{x \to a} \dfrac{{{x^4} - {a^4}}}{{x - a}} = \mathop {\lim }\limits_{x \to a} \dfrac{{\left( {x - a} \right)\left( {x + a} \right)\left( {{x^2} + {a^2}} \right)}}{{x - a}}\\ = \mathop {\lim }\limits_{x \to a} \left( {x + a} \right)\left( {{x^2} + {a^2}} \right) = 2a.2{a^2} = 4{a^3}\end{array}\)

Đáp án cần chọn là: C

Group 2K9 ôn Thi ĐGNL & ĐGTD Miễn Phí

>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com