Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho cấp số cộng \(\left( {{u_n}} \right)\) có \({S_6} = 18\) và \({S_{10}} = 110\). Tính \({S_{16}}\).

Câu hỏi số 462009:
Thông hiểu

Cho cấp số cộng \(\left( {{u_n}} \right)\) có \({S_6} = 18\) và \({S_{10}} = 110\). Tính \({S_{16}}\).

Đáp án đúng là: A

Quảng cáo

Câu hỏi:462009
Phương pháp giải

Sử dụng công thức tính tổng \(n\) số hạng đầu tiên của cấp số cộng có số hạng đầu \({u_1}\), công sai \(d\) là \({S_n} = \dfrac{{\left( {2{u_1} + \left( {n - 1} \right)d} \right).n}}{2}\).

Giải chi tiết

Gọi \({u_1}\) là số hạng đầu và \(d\) là công sai của CSC.

Theo bài ra ta có:

\(\begin{array}{l}\left\{ \begin{array}{l}{S_6} = 18\\{S_{10}} = 110\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}\dfrac{{\left( {2{u_1} + 5d} \right).6}}{2} = 18\\\dfrac{{\left( {2{u_1} + 9d} \right).10}}{2} = 110\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}2{u_1} + 5d = 6\\2{u_1} + 9d = 22\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{u_1} = - 7\\d = 4\end{array} \right.\end{array}\)

Vậy \({S_{16}} = \dfrac{{\left( {2{u_1} + 15d} \right).16}}{2} = \dfrac{{\left( {2.\left( { - 7} \right) + 15.4} \right).16}}{2} = 368\).

Đáp án cần chọn là: A

Group 2K9 ôn Thi ĐGNL & ĐGTD Miễn Phí

>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com