Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Trên một sợi dây rất dài có hai điểm M và N cách nhau 12 cm. Tại điểm O trên đoạn MN người

Câu hỏi số 462946:
Vận dụng cao

Trên một sợi dây rất dài có hai điểm M và N cách nhau 12 cm. Tại điểm O trên đoạn MN người ta gắn vào dây một cần rung dao động với phương trình \(u = 3\sqrt 2 \cos 20\pi t\,\,\left( {cm} \right)\) (t tính bằng s), tạo ra sóng truyền trên dây với tốc độ 1,6 m/s. Khoảng cách xa nhất giữa 2 phần tử dây tại M và N khi có sóng truyền qua là

Đáp án đúng là: A

Quảng cáo

Câu hỏi:462946
Phương pháp giải

Bước sóng: \(\lambda = \frac{v}{f} = \frac{{v.2\pi }}{\omega }\)

Độ lệch pha dao động: \(\Delta \varphi = \frac{{2\pi d}}{\lambda }\)

Khoảng cách giữa điểm theo phương dao động: \(\Delta u = \left| {{u_1} - {u_2}} \right|\)

Công thức lượng giác: \(\cos a - \cos b = - 2\sin \frac{{a + b}}{2}\sin \frac{{a - b}}{2}\)

Khoảng cách giữa hai điểm MN: \(d = \sqrt {M{N^2} + \Delta {u^2}} \)

Giải chi tiết

Bước sóng của sóng truyền trên dây là:

\(\lambda = \frac{{v.2\pi }}{\omega } = \frac{{1,6.2\pi }}{{20\pi }} = 0,16\,\,\left( m \right) = 16\,\,\left( {cm} \right)\)

Độ lệch pha giữa hai điểm M, N là:

\(\begin{array}{l}\Delta \varphi = \frac{{2\pi .MN}}{\lambda } = \frac{{2\pi .12}}{{16}} = \frac{{3\pi }}{2}\,\,\left( {rad} \right)\\ \Rightarrow {\varphi _M} - {\varphi _N} = \frac{{3\pi }}{2}\end{array}\)

Ta có phương trình sóng của hai điểm M, N:

\(\begin{array}{l}{u_M} = 3\sqrt 2 \cos \left( {20\pi t + {\varphi _M}} \right)\\{u_N} = 3\sqrt 2 \cos \left( {20\pi t + {\varphi _N}} \right)\end{array}\)

Khoảng cách giữa hai điểm M, N trên phương dao động là:

\(\begin{array}{l}\Delta u = \left| {{u_M} - {u_N}} \right| = \left| {3\sqrt 2 \cos \left( {20\pi t + {\varphi _M}} \right) - 3\sqrt 2 \cos \left( {20\pi t + {\varphi _N}} \right)} \right|\\ \Rightarrow \Delta u = \left| { - 2.3\sqrt 2 \sin \frac{{{\varphi _M} - {\varphi _N}}}{2}} \right|\sin \left( {20\pi t + \frac{{{\varphi _M} + {\varphi _N}}}{2}} \right)\\ \Rightarrow \Delta {u_{\max }} = \left| { - 2.3\sqrt 2 \sin \frac{{{\varphi _M} - {\varphi _N}}}{2}} \right| = \left| { - 2.3\sqrt 2 \sin \frac{{3\pi }}{4}} \right| = 6\,\,\left( {cm} \right)\end{array}\)

Khoảng cách lớn nhất giữa hai điểm M, N là:

\({d_{\max }} = \sqrt {M{N^2} + \Delta {u_{\max }}^2} = \sqrt {{{12}^2} + {6^2}} \approx 13,4\,\,\left( {cm} \right)\)

Đáp án cần chọn là: A

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com