Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Một biển quảng cáo có dạng hình elip với 4 đỉnh \({A_1},\,\,{A_2},\,\,{B_1},\,\,{B_2}\) như hình vẽ

Câu hỏi số 466693:
Vận dụng cao

Một biển quảng cáo có dạng hình elip với 4 đỉnh \({A_1},\,\,{A_2},\,\,{B_1},\,\,{B_2}\) như hình vẽ bên. Biết \({A_1}{A_2} = 8m,\,\,{B_1}{B_2} = 6m\) và tứ giác \(MNPQ\) là hình chữ nhật với \(MQ = 3m\). Biết chi phí để sơn phần tô đậm là 200 000 đồng/ \({m^2}\), và phần còn lại lại 100 000 đồng/ \({m^2}\). Hỏi số tiền cần để sơn gần nhất với đáp án nào?

Đáp án đúng là: A

Quảng cáo

Câu hỏi:466693
Giải chi tiết

Elip có độ dài trục lớn là \(2a = 8 \Rightarrow a = 4m\).

Độ dài trục bé là \(2b = 6 \Rightarrow b = 3m\), suy ra diện tích elip là:

\(S = \pi ab = 12\pi \,\,\left( {{m^2}} \right)\)

Gắn hệ trục tọa độ như hình vẽ, khi đó elip có phương trình chính tắc là: \(\left( E \right):\,\,\dfrac{{{x^2}}}{{16}} + \dfrac{{{y^2}}}{9} = 1\).

Ta có \(MQ = NP = 3 \Rightarrow N\left( {{x_0};\dfrac{3}{2}} \right),\,\,{x_0} > 0\).

Do \(N \in \left( E \right) \Rightarrow {x_0} = 2\sqrt 3  \Rightarrow N\left( {2\sqrt 3 ;\dfrac{3}{2}} \right)\).

Từ \(\dfrac{{{x^2}}}{{16}} + \dfrac{{{y^2}}}{9} = 1 \Leftrightarrow {y^2} = 9\left( {1 - \dfrac{{{x^2}}}{{16}}} \right) \Leftrightarrow y =  \pm \dfrac{3}{4}\sqrt {16 - {x^2}} \)

Gọi \({S_1}\) là diện tích hình phẳng giới hạn bởi các đường \(y = \dfrac{3}{4}\sqrt {16 - {x^2}} \), \(y = 0\), \(x = 0,\,\,x = 2\sqrt 3 \).

Do tính đối xứng của hình elip nên diện tích phần tô đậm được tính

\({S_{TD}} = 4{S_1} = 4\int\limits_0^{2\sqrt 3 } {\dfrac{3}{4}\sqrt {16 - {x^2}} dx}  = 3\int\limits_0^{2\sqrt 3 } {\sqrt {16 - {x^2}} dx} \)

Đặt \(4\sin t \Rightarrow dx = 4\cos tdt\)

\(\begin{array}{l}{S_{TD}} = 3\int\limits_0^{\dfrac{\pi }{3}} {\sqrt {16 - 16{{\sin }^2}t} 4\cos tdt} \\\,\,\,\,\,\,\,\, = 48\int\limits_0^{\dfrac{\pi }{3}} {{{\cos }^2}tdt}  = 24\int\limits_0^{\dfrac{\pi }{3}} {\left( {1 + \cos 2t} \right)dt} \\\,\,\,\,\,\,\,\, = 24\left. {\left( {t + \dfrac{1}{2}\sin 2t} \right)} \right|_0^{\dfrac{\pi }{3}} = 24\left( {\dfrac{\pi }{3} + \dfrac{{\sqrt 3 }}{4}} \right) = 8\pi  + 6\sqrt 3 \,\,\left( {{m^2}} \right)\end{array}\)

Diện tích phần còn lại là \(S' = 12\pi  - \left( {8\pi  + 6\sqrt 3 } \right) = 4\pi  - 6\sqrt 3 \,\,\left( {{m^2}} \right)\).

Số tiền cần để sơn là:

\(T = \left( {8\pi  + 6\sqrt 3 } \right).200\,000\, + \left( {4\pi  - 6\sqrt 3 } \right).100\,000 \approx 7\,322\,000\) (đồng).

Đáp án cần chọn là: A

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com