Cho hình chóp \(S.ABC\) có đáy là tam giác đều cạnh \(a\), cạnh bên \(SA = a\) và \(SA \bot \left(
Cho hình chóp \(S.ABC\) có đáy là tam giác đều cạnh \(a\), cạnh bên \(SA = a\) và \(SA \bot \left( {ABC} \right)\). Gọi \(I\) là trung điểm của \(BC\). Khoảng cách giữa hai đường thẳng \(SI\) và \(AB\) bằng:
Đáp án đúng là: D
Quảng cáo
- Gọi \(J\) là trung điểm của \(AC\), chứng minh \(d\left( {AB;SI} \right) = d\left( {A;\left( {SIJ} \right)} \right)\).
- Gọi \(M\) là trung điểm của \(AB\). Trong \(\left( {ABC} \right)\) kẻ \(AH//CM\), trong \(\left( {SAH} \right)\) kẻ \(AK \bot SH\,\left( {K \in SH} \right)\), chứng minh \(AK \bot \left( {SIJ} \right)\).
- Sử dụng hệ thức lượng trong tam giác vuông để tính khoảng cách.
Đáp án cần chọn là: D
>> 2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com













