Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình chữ nhật, \(AB = a,\) \(AD = 2a\). Tam giác \(SAB\) cân

Câu hỏi số 472416:
Vận dụng

Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình chữ nhật, \(AB = a,\) \(AD = 2a\). Tam giác \(SAB\) cân tại \(S\) và nằm trong mặt phẳng vuông góc với đáy. Góc giữa \(SC\) và mặt phẳng \(\left( {ABCD} \right)\) bằng \({45^0}\). Gọi \(M\) là trung điểm \(SD\), hãy tính theo \(a\) khoảng cách \(d\) từ \(M\) đến mặt phẳng \(\left( {SAC} \right)\).

Đáp án đúng là: A

Quảng cáo

Câu hỏi:472416
Phương pháp giải

- Đổi \(d\left( {M;\left( {SAC} \right)} \right)\) sang \(d\left( {H;\left( {SAC} \right)} \right)\).

- Trong \(\left( {ABCD} \right)\) kẻ \(HE \bot AC\,\,\left( {E \in AC} \right)\), trong \(\left( {SHE} \right)\) kẻ \(HN \bot SE\,\,\left( {N \in SE} \right)\), chứng minh \(HN \bot \left( {SAC} \right)\)

- Xác định góc giữa \(SC\) và \(\left( {ABCD} \right)\), từ đó tính \(SH\).

- Sử dụng \({S_{HAC}} = \dfrac{1}{2}HE.AC = \dfrac{1}{2}{S_{ABC}}\), từ đó tính \(HE\).

- Sử dụng hệ thức lượng trong tam giác vuông tính \(HN\).

Giải chi tiết

Gọi \(H\) là trung điểm \(AB\). Vì \(\Delta SAB\) cân tại \(S\) nên \(SH \bot AB\).

Ta có: \(\left\{ \begin{array}{l}\left( {SAB} \right) \cap \left( {ABCD} \right) = AB\\SH \subset \left( {ABCD} \right),\,\,SH \bot AB\end{array} \right.\) \( \Rightarrow SH \bot \left( {ABCD} \right)\).

Gọi \(K = HD \cap AC\). Áp dụng định lí T-aet ta có \(\dfrac{{DK}}{{HK}} = \dfrac{{DC}}{{AH}} = 2 \Rightarrow DK = 2HK\).

Ta có \(MD \cap \left( {SAC} \right) = S \Rightarrow \dfrac{{d\left( {M;\left( {SAC} \right)} \right)}}{{d\left( {D;\left( {SAC} \right)} \right)}} = \dfrac{{SM}}{{SD}} = \dfrac{1}{2}\)

\( \Rightarrow d\left( {M;\left( {SAC} \right)} \right) = \dfrac{1}{2}d\left( {D;\left( {SAC} \right)} \right)\).

Lại có \(DH \cap \left( {SAC} \right) = K\) nên \(\dfrac{{d\left( {D;\left( {SAC} \right)} \right)}}{{d\left( {H;\left( {SAC} \right)} \right)}} = \dfrac{{DK}}{{HK}} = 2 \Rightarrow d\left( {D;\left( {SAC} \right)} \right) = 2d\left( {H;\left( {SAC} \right)} \right)\).

Do đó \(d\left( {M;\left( {SAC} \right)} \right) = d\left( {H;\left( {SAC} \right)} \right)\).

Trong \(\left( {ABCD} \right)\) kẻ \(HE \bot AC\,\,\left( {E \in AC} \right)\), trong \(\left( {SHE} \right)\) kẻ \(HN \bot SE\,\,\left( {N \in SE} \right)\) ta có:

\(\begin{array}{l}\left\{ \begin{array}{l}AC \bot HE\\AC \bot SH\end{array} \right. \Rightarrow AC \bot \left( {SHE} \right) \Rightarrow AC \bot HN\\\left\{ \begin{array}{l}HN \bot SE\\HN \bot AC\end{array} \right. \Rightarrow HN \bot \left( {SAC} \right) \Rightarrow d\left( {H;\left( {SAC} \right)} \right) = HN\end{array}\)

Vì \(SH \bot \left( {ABCD} \right)\) nên \(HC\) là hình chiếu vuông góc của \(SC\) lên \(\left( {ABCD} \right)\).

\( \Rightarrow \angle \left( {SC;\left( {ABCD} \right)} \right) = \angle \left( {SC;HC} \right) = \angle SCH = {45^0}\).

\( \Rightarrow \Delta SHC\) vuông cân tại \(H\)\( \Rightarrow SH = HC = \sqrt {B{C^2} + B{H^2}}  = \sqrt {{{\left( {2a} \right)}^2} + {{\left( {\dfrac{a}{2}} \right)}^2}}  = \dfrac{{a\sqrt {17} }}{2}\).

Ta có: \({S_{HAC}} = \dfrac{1}{2}HE.AC = \dfrac{1}{2}{S_{ABC}}\)

\(\begin{array}{l} \Rightarrow HE.AC = \dfrac{1}{2}.AB.BC\\ \Rightarrow HE = \dfrac{{\dfrac{1}{2}.AB.BC}}{{AC}} = \dfrac{{\dfrac{1}{2}.a.2a}}{{\sqrt {{a^2} + {{\left( {2a} \right)}^2}} }} = \dfrac{a}{{\sqrt 5 }}\end{array}\)

Áp dụng hệ thức lượng trong tam giác vuông \(SHE\) ta có:

Nên \(HN = \dfrac{{SH.HE}}{{\sqrt {S{H^2} + H{E^2}} }} = \dfrac{{\dfrac{{a\sqrt {17} }}{2}.\dfrac{a}{{\sqrt 5 }}}}{{\sqrt {\dfrac{{17{a^2}}}{4} + \dfrac{{{a^2}}}{5}} }} = \dfrac{{a\sqrt {1513} }}{{89}}\).

Vậy \(d\left( {M;\left( {SAC} \right)} \right) = \dfrac{{a\sqrt {1513} }}{{89}}\).

Đáp án cần chọn là: A

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com