Tập hợp các điểm trên mặt phẳng tọa độ biểu diễn các số phức z thỏa mãn điều kiện
Tập hợp các điểm trên mặt phẳng tọa độ biểu diễn các số phức z thỏa mãn điều kiện \(2|z-1-2i|=|3i+1-2\bar{z}|\) là đường thẳng có dạng \(ax+by+c=0\), với \(b,c\) nguyên tố cùng nhau. Tính \(P=a+b\).
Đáp án đúng là: A
Quảng cáo
Phương pháp tìm tập hợp điểm biểu diễn số phức
Bước 1: Gọi số phức \(z=x+yi\)có điểm biểu diễn là \(M(x;y)\)
Bước 2: Thay z vào đề bài \(\Rightarrow \)Sinh ra một phương trình:
+) Đường thẳng: \(Ax+By+C=0.\)
+) Đường tròn: \({{x}^{2}}+{{y}^{2}}-2ax-2by+c=0.\)
+) Parabol: \(y=a.{{x}^{2}}+bx+c\)
+) Elip: \(\frac{{{x}^{2}}}{a}+\frac{{{y}^{2}}}{b}=1\)
Đáp án cần chọn là: A
>> 2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com












