Cho đa thức \(f\left( x \right)\) thỏa mãn \(\mathop {\lim }\limits_{x \to 4} \dfrac{{f\left( x \right) - 2}}{{x
Cho đa thức \(f\left( x \right)\) thỏa mãn \(\mathop {\lim }\limits_{x \to 4} \dfrac{{f\left( x \right) - 2}}{{x - 4}} = 4\). Biết \(L = \mathop {\lim }\limits_{x \to 4} \dfrac{{\sqrt[3]{{3f\left( x \right) + 21}} + \sqrt[4]{{4f\left( x \right) + 8}} - 5}}{{{x^2} - 16}} = \dfrac{a}{b}\) là phân số tối giản với \(a,\,\,b \in {\mathbb{N}^*}\). Tính \(b - 5a - 35\).
Đáp án đúng là: D
Quảng cáo
Đáp án cần chọn là: D
>> 2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com












