Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Viết phương trình tiếp tuyến của đồ thị hàm số \(y = {x^4} + x\), biết tiếp tuyến đó vuông

Câu hỏi số 482688:
Thông hiểu

Viết phương trình tiếp tuyến của đồ thị hàm số \(y = {x^4} + x\), biết tiếp tuyến đó vuông góc với đường thẳng \(y =  - \dfrac{1}{5}x + 2\).

Đáp án đúng là: B

Quảng cáo

Câu hỏi:482688
Phương pháp giải

- Hai đường thẳng vuông góc khi và chỉ khi tích hệ số góc của chúng bằng \( - 1\).

- Phương trình tiếp tuyến của đồ thị hàm số \(y = f\left( x \right)\) tại điểm có hoành độ \(x = {x_0}\) là

\(y = f'\left( {{x_0}} \right)\left( {x - {x_0}} \right) + f\left( {{x_0}} \right)\).

Giải chi tiết

Ta có \(y' = 4{x^3} + 1\).

Hệ số góc của tiếp tuyến của đồ thị tại điểm có hoành độ \(x = {x_0}\) là \(k = 4x_0^3 + 1\).

Vì tiếp tuyến vuông góc với đường thẳng \(y =  - \dfrac{1}{5}x + 2\) nên \(k\left( { - \dfrac{1}{5}} \right) =  - 1 \Leftrightarrow k = 5\).

\( \Rightarrow 4x_0^3 + 1 = 5 \Leftrightarrow {x_0} = 1 \Rightarrow {y_0} = 2\).

Vậy phương trình tiếp tuyến cần tìm là: \(y = 5\left( {x - 1} \right) + 2 = 5x - 3\).

Đáp án cần chọn là: B

Group 2K9 ôn Thi ĐGNL & ĐGTD Miễn Phí

>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com