Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho hàm số \(y = f\left( x \right)\) liên tục trên \(\mathbb{R}\) và có đồ thị \(f'\left( x \right)\)

Câu hỏi số 483721:
Vận dụng cao

Cho hàm số \(y = f\left( x \right)\) liên tục trên \(\mathbb{R}\) và có đồ thị \(f'\left( x \right)\) như hình vẽ bên. Bất phương trình \({\log _5}\left[ {f\left( x \right) + m + 2} \right] + f\left( x \right) > 4 - m\) đúng với mọi \(x \in \left( { - 1;4} \right)\) khi và chỉ khi:

Đáp án đúng là: B

Quảng cáo

Câu hỏi:483721
Phương pháp giải

- Đặt \(t = f\left( x \right) + m + 2\), sử dụng tính đơn điệu của hàm số tìm \(t > {t_0}\).

- Đưa bất phương trình về dạng \(m \le f\left( x \right)\,\,\forall x \in \left( { - 1;4} \right) \Leftrightarrow m \le \mathop {\min }\limits_{\left[ { - 1;4} \right]} f\left( x \right)\).

- Lập BBT hàm số \(f\left( x \right)\), và sử dụng ứng dụng tích phân tìm \(\mathop {\min }\limits_{\left[ { - 1;4} \right]} f\left( x \right)\).

Giải chi tiết

Ta có:

\(\begin{array}{l}\,\,\,\,\,\,{\log _5}\left[ {f\left( x \right) + m + 2} \right] + f\left( x \right) > 4 - m\\ \Leftrightarrow {\log _5}\left[ {f\left( x \right) + m + 2} \right] + f\left( x \right) + m + 2 > 6\end{array}\)

Đặt \(t = f\left( x \right) + m + 2\), bất phương trình trở thành \({\log _5}t + t > 6\,\,\left( {t > 0} \right)\).

Xét hàm số \(g\left( t \right) = {\log _5}t + t\,\,\left( {t > 0} \right)\) ta có \(g'\left( t \right) = \dfrac{1}{{t\ln 5}} + 1 > 0\,\,\forall t > 0\), do đó hàm số đồng biến trên \(\left( {0; + \infty } \right)\).

Lại có \(g\left( 5 \right) = {\log _5}5 + 5 = 6\) nên ta có \(g\left( t \right) > g\left( 5 \right) \Leftrightarrow t > 5\).

Khi đó ta có \(f\left( x \right) + m + 2 > 5 \Leftrightarrow f\left( x \right) > 3 - m\) có nghiệm với mọi \(x \in \left( { - 1;4} \right)\) \( \Leftrightarrow 3 - m \le \mathop {\min }\limits_{\left[ { - 1;4} \right]} f\left( x \right)\).

Dựa vào đồ thị hàm số \(y = f'\left( x \right)\) ta có BBT như sau:

Ta cần so sánh \(f\left( { - 1} \right)\) và \(f\left( 4 \right)\).

Ta có:

\(\begin{array}{l}\int\limits_{ - 1}^1 {f'\left( x \right)dx}  <  - \int\limits_1^4 {f'\left( x \right)dx} \\ \Rightarrow f\left( 1 \right) - f\left( { - 1} \right) <  - f\left( 4 \right) + f\left( 1 \right)\\ \Leftrightarrow f\left( { - 1} \right) > f\left( 4 \right)\end{array}\)

Do đó \(\mathop {\min }\limits_{\left[ { - 1;4} \right]} f\left( x \right) = f\left( 4 \right)\).

Vậy \(3 - m \le f\left( 4 \right) \Leftrightarrow m \ge 3 - f\left( 4 \right)\).

Đáp án cần chọn là: B

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com