Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hinh thang vuông tại \(A\) và \(D\). Biết \(AB = 4a,\) \(AD =

Câu hỏi số 493224:
Vận dụng

Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hinh thang vuông tại \(A\) và \(D\). Biết \(AB = 4a,\) \(AD = CD = 2a\). Cạnh bên \(SA = 3a\) và \(SA\) vuông góc với mặt phẳng đáy. Gọi \(G\) là trọng tâm tam giác \(SBC\), \(M\) là điểm sao cho \(\overrightarrow {MA}  =  - 2\overrightarrow {MS} \) và \(E\) là trung điểm cạnh \(CD\) (thao khảo hình vẽ). Tính thể tích \(V\) của khối đa diện \(MGABE\).

Đáp án đúng là: D

Quảng cáo

Câu hỏi:493224
Giải chi tiết

Gọi \(N,\,\,K\) lần lượt là trung điểm của \(AB,\,\,BC\) và \(AK \cap CN = H\).

Khi đó \(H\) là trọng tâm tam giác \(ABC\)

\( \Rightarrow HN = \dfrac{{CN}}{3} = \dfrac{{2a}}{3}\,;\,\,\,\,\,\dfrac{{AH}}{{AK}} = \dfrac{2}{3}\).

G  là trọng tâm tam giác SBC nên \(\dfrac{{SG}}{{SK}} = \dfrac{2}{3}\).

Do đó \(\dfrac{{SG}}{{SK}} = \dfrac{{AH}}{{AK}}\, \Rightarrow GH\parallel SA\, \Rightarrow \dfrac{{GH}}{{SA}} = \dfrac{{HK}}{{AK}} = \dfrac{1}{3}\).

Có \(AM = \dfrac{2}{3}SA = 2a\, \Rightarrow \dfrac{{GH}}{{AM}} = \dfrac{{GH}}{{\dfrac{2}{3}SA}} = \dfrac{1}{2}\).

Gọi \(MG \cap AK = I\).

Xét tam giác vuông \(MAI\) có \(MA//GH\, \Rightarrow \dfrac{{IH}}{{AI}} = \dfrac{{GH}}{{AM}} = \dfrac{1}{2}\, \Rightarrow H\) là trung điểm của\(AI\).

Mà \(N\) là trung điểm của \(AB\) nên \(HN\) là đường trung bình của tam giác \(ABI\).

\( \Rightarrow BI//HN\,\) và \(BI = 2HN = 2.\dfrac{1}{3}CN = \dfrac{2}{3}AD = \dfrac{{4a}}{3}\).

Gọi \(J\) là trung điểm của \(AN\) \( \Rightarrow d\left( {E;BI} \right) = d\left( {J;BI} \right) = JB = 3a\).

Mà \({S_{AEBI}} = {S_{ABE}} + {S_{EBI}} = \dfrac{1}{2}d\left( {E;AB} \right).AB + \dfrac{1}{2}d\left( {E;BI} \right).BI\)

     \(\,\,\,\,\,\,\,\,\,\,\,\, = \dfrac{1}{2}.2a.4a + \dfrac{1}{2}.3a.\dfrac{{4a}}{3} = 6{a^2}\)

Có \({V_{M.AEBI}} = \dfrac{1}{3}.MA.{S_{AEBI}} = \dfrac{1}{3}.2a.6{a^2} = 4{a^3}\), \({V_{G.BEI}} = \dfrac{1}{3}.GH.{S_{BEI}} = \dfrac{1}{3}.\dfrac{1}{2}2a.\dfrac{1}{2}.3a.\dfrac{{4a}}{3} = \dfrac{{2{a^3}}}{3}\).

Vậy \({V_{M.GABE}} = {V_{M.AEBI}} - {V_{G.BEI}} = \dfrac{{10{a^3}}}{3}\).

Đáp án cần chọn là: D

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com