Hình giải tích phẳng
Trong mặt phẳng tọa độ Oxy cho đường tròn (C): x2 + y2 = 2. Viết phương trình tiếp tuyến của đường tròn (C) biết tiếp tuyến đó cắt tia Ox, Oy lần lượt tại A và B sao cho ∆OAB có diện tích nhỏ nhất.
Đáp án đúng là: B
Quảng cáo
Đáp án cần chọn là: B
>> 2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com


+
= 1 <=>
= √2
= √2 (***)
≤
= S∆OAB
+
- 1 = 0










