Cho hàm số \(y = \dfrac{{3x - 1}}{{x - 3}}\,\,\,\left( C \right)\). Gọi \(M\) là điểm bất kì
Cho hàm số \(y = \dfrac{{3x - 1}}{{x - 3}}\,\,\,\left( C \right)\). Gọi \(M\) là điểm bất kì trên \(\left( C \right)\), \(d\) là tổng khoảng cách từ \(M\) đến hai đường tiệm cận của đồ thị \(\left( C \right)\). Giá trị nhỏ nhất của \(d\) là
Đáp án đúng là: D
Quảng cáo
Tìm đường tiệm cận của \(\left( C \right)\)
Tọa độ hóa điểm \(M\). Viết công thức tính khoảng cách từ M tới các đường tiệm cận.
Đáp án cần chọn là: D
>> 2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com












