Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc ĐGNL Hà Nội, ĐGNL HCM - Ngày 17-18/01/2026
↪ ĐGNL Hà Nội (HSA) - Trạm 3 ↪ ĐGNL HCM (V-ACT) - Trạm 3
Giỏ hàng của tôi

Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh 2a. Cạnh bên SA vuông góc với đáy, góc giữa

Câu hỏi số 514314:
Thông hiểu

Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh 2a. Cạnh bên SA vuông góc với đáy, góc giữa SC và mặt đáy (ABCD) bằng \({45^0}\). Tính tan của góc giữa đường thẳng SD và mp(SAC).

Đáp án đúng là: A

Quảng cáo

Câu hỏi:514314
Phương pháp giải

Áp dụng phương pháp tìm góc giữa đường thẳng và mặt phẳng – hệ thức lượng trong tam giác vuông để giải quyết yêu cầu của bài toán

Giải chi tiết

Xác định \({45^0} = \widehat {\left( {SC;\left( {ABCD} \right)} \right)} = \widehat {\left( {SC;AC} \right)} = \widehat {SCA}\)

\( \Rightarrow \Delta SAC\) vuông cân tại A \( \Rightarrow SA = AC = BD = 2a\sqrt 2 \)

Gọi \(O = AC \cap BD\), ta có \(\left\{ \begin{array}{l}DO \bot AC\\DO \bot SA\end{array} \right. \Rightarrow DO \bot \left( {SAC} \right)\) nên hình chiếu vuông góc của SD trên mặt phẳng (SAC) là SO.

Do đó \(\widehat {\left( {SD;\left( {SAC} \right)} \right)} = \widehat {\left( {SD;SO} \right)} = \widehat {DSO} \in \left( {{0^0};{{90}^0}} \right).\)

Ta có \(DO = \dfrac{1}{2}BD = a\sqrt 2  = AO\), \(SO = \sqrt {S{A^2} + A{O^2}}  = \sqrt {8{a^2} + 2{a^2}}  = a\sqrt {10} \).

Tam giác vuông SOD, có \(\tan \widehat {DSO} = \dfrac{{OD}}{{OS}} = \dfrac{{a\sqrt 2 }}{{a\sqrt {10} }} = \dfrac{{\sqrt 5 }}{5}\).

Đáp án cần chọn là: A

Group 2K9 ôn Thi ĐGNL & ĐGTD Miễn Phí

>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com