Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Giỏ hàng của tôi

Cho hàm số \(f\left( x \right) = \left\{ \begin{array}{l}x\sin \dfrac{2}{x}\,\,\,\,\,\,\,\,\,\,\,khi\,\,x >

Câu hỏi số 518293:
Vận dụng

Cho hàm số \(f\left( x \right) = \left\{ \begin{array}{l}x\sin \dfrac{2}{x}\,\,\,\,\,\,\,\,\,\,\,khi\,\,x > 0\\a\cos x - 5\,\,\,\,khi\,\,x \le 0\end{array} \right.\) . Tìm tất cả các giá trị thực của tham số a để hàm số liên tục trên R.

Đáp án đúng là: A

Câu hỏi:518293
Phương pháp giải

Xét tính liên tục của hàm số tại x = 0. Để hàm số liên tục tại điểm x = 0 thì \(\mathop {\lim }\limits_{x \to {0^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {0^ - }} f\left( x \right) = f\left( 0 \right)\)

Giải chi tiết

Hàm số đã cho liên tục trên các khoảng \(\left( { - \infty ;0} \right)\) và \(\left( {0; + \infty } \right)\). Để hàm số liên tục trên R ta cần chứng minh hàm số liên tục tại x = 0.

\(\mathop {\lim }\limits_{x \to {0^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {0^ - }} \left( {a\cos x - 5} \right) = a - 5 = f\left( 0 \right)\)

Ta có \(0 \le \left| {x\sin \dfrac{2}{x}} \right| \le \left| x \right|,\,\,\mathop {\lim }\limits_{x \to {0^ + }} \left| x \right| = 0 \Rightarrow \mathop {\lim }\limits_{x \to {0^ + }} \left( {x\sin \dfrac{2}{x}} \right) = 0\)

Để hàm số liên tục tại điểm x = 0 thì \(\mathop {\lim }\limits_{x \to {0^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {0^ - }} f\left( x \right) = f\left( 0 \right) \Leftrightarrow a - 5 = 0 \Leftrightarrow a = 5\)

Tham Gia Group Dành Cho 2K8 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

>> Học trực tuyến Lớp 11 cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng. Cam kết giúp học sinh lớp 11 học tốt, hoàn trả học phí nếu học không hiệu quả.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com