Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình chữ nhật tâm \(O.\) Biết \(AB = a;\,BC =

Câu hỏi số 529315:
Vận dụng cao

Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình chữ nhật tâm \(O.\) Biết \(AB = a;\,BC = 2a;\,SO \bot \left( {ABCD} \right);\,SO = \dfrac{{3a}}{2}.\) Gọi \(M,N\) lần lượt là trung điểm của \(BC,SD.\) Mặt phẳng \(\left( {AMN} \right)\) cắt \(SC\) tại \(E.\) Thể tích \(V\) của khối đa diện lồi \(SABEN\) bằng

Đáp án đúng là: A

Quảng cáo

Câu hỏi:529315
Phương pháp giải

Xác định giao điểm \(E\) của mặt phẳng \(\left( {AMN} \right)\) và \(SC\).

Sử dụng định lí Ta-let để tính các tỉ số, từ đó suy ra được tỉ số \(\dfrac{{SE}}{{SC}}\)

Sử dụng tỉ lệ thể tích: \(\dfrac{{{V_{SABE}}}}{{{V_{SABC}}}} = \dfrac{{SE}}{{SC}};\,\dfrac{{{V_{SAEN}}}}{{{V_{SACD}}}} = \dfrac{{SE}}{{SC}}.\dfrac{{SN}}{{SD}}\) và \({V_{SABEN}} = {V_{SABE}} + {V_{SAEN}}\), từ đó suy ra \({V_{SABEN}}\)

Giải chi tiết

Trong mặt phẳng đáy \(\left( {ABCD} \right),\) \(AM \cap CD = F\)

Trong \(\left( {SCD} \right),\,FN \cap SC = E\)

Kẻ \(KN//CD \Rightarrow K\) là trung điểm của \(SC\)

Khi đó: \(KN = \dfrac{1}{2}CD\)

Ta có: \(AB = CF \Rightarrow CF = CD\)

Mà \(KN//CD \Rightarrow KN//CF \Rightarrow \dfrac{{KN}}{{CF}} = \dfrac{{KE}}{{CE}} = \dfrac{1}{2}\)

\(\begin{array}{l} \Rightarrow KE = \dfrac{1}{2}EC \Rightarrow KE = \dfrac{1}{3}KC = \dfrac{1}{6}SC\\ \Rightarrow SE = KS + KE = \dfrac{1}{2}SC + \dfrac{1}{6}SC = \dfrac{2}{3}SC\end{array}\)

Ta có: \(\dfrac{{{V_{SABE}}}}{{{V_{SABC}}}} = \dfrac{{SE}}{{SC}} = \dfrac{2}{3}\)

\(\dfrac{{{V_{SAEN}}}}{{{V_{SACD}}}} = \dfrac{{SE}}{{SC}}.\dfrac{{SN}}{{SD}} = \dfrac{2}{3}.\dfrac{1}{2} = \dfrac{1}{3}\)

\(\dfrac{{{V_{ABEN}}}}{{\dfrac{1}{2}{V_{SABCD}}}} = \dfrac{2}{3} + \dfrac{1}{3} = 1 \Rightarrow {V_{SABEN}} = \dfrac{1}{2}{V_{SABCD}} = \dfrac{1}{2}.\dfrac{1}{3}.\dfrac{3}{2}a.2a = \dfrac{{{a^3}}}{2}\)

Đáp án cần chọn là: A

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com