Cho hai đường cong \(\left( {{C_1}} \right):y = {2^x};\,\left( {{C_2}} \right):y = {\log _2}x.\) gọi \(S\) là
Cho hai đường cong \(\left( {{C_1}} \right):y = {2^x};\,\left( {{C_2}} \right):y = {\log _2}x.\) gọi \(S\) là tập hợp tất cả các giá trị thực của tham số \(m\) sao cho đường thẳng \(y = - x + m\) cắt trục tung \(\left( {{C_1}} \right),\,\left( {{C_2}} \right)\) và trục hoành lần lượt tại các điểm \(A,B,C,D\) sao cho \(AD = 3BC\) như hình vẽ

Tổng tất cả các phần tử của \(S\) bằng
Đáp án đúng là: B
Quảng cáo
Sử dụng lí thuyết: Đồ thị hàm số \(y = {a^x}\) đối xứng với đồ thị hàm số \(y = {\log _a}x\) qua đường thẳng \(y = x\)
Lấy \(E\) là giao điểm của \(AD\) và đường thẳng \(y = x\) suy ra \(E\) là trung điểm của \(AD\)
Thiết lập các mối quan hệ về tỉ số giữa các đoạn thẳng để tìm được tọa độ điểm \(C\).
Từ đó tìm được các giá trị \(m\) thỏa mãn.
Đáp án cần chọn là: B
>> 2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com














