Cho C là một điểm nằm trên nửa đường tròn tâm \(\left( O \right)\) đường kính \(AB\,\,\,\left( {C
Cho C là một điểm nằm trên nửa đường tròn tâm \(\left( O \right)\) đường kính \(AB\,\,\,\left( {C \ne A,\,\,C \ne B} \right).\) Gọi \(H\) là hình chiếu vuông góc của \(C\) trên \(AB,\,\,D\) là điểm đối xứng của \(A\) qua \(C,\,\,I\) là trung điểm của \(CH,\,\,J\) là trung điểm của \(DH\) và \(E\) là giao điểm của \(HD\) và \(BI.\) Chứng minh \(HE.HD = H{C^2}\).
Quảng cáo
Ta chỉ ra được: \(\angle CIJ = \angle CBH\); \(\tan CBH = \dfrac{{CH}}{{BH}}\); \(\tan CIJ = \dfrac{{CJ}}{{CI}} = \dfrac{{CJ}}{{HI}}\) từ đó, suy ra \(\dfrac{{CH}}{{BH}} = \dfrac{{CJ}}{{HI}}\)
Ta sẽ chứng minh:
+ \( \Rightarrow \angle CHJ = \angle HBI\)
+ \( \Rightarrow HE.HJ = HC.HI\)
Mà \(\left\{ \begin{array}{l}HJ = \dfrac{1}{2}HD\,\,\,\left( {gt} \right)\\HI = \dfrac{1}{2}HC\,\,\,\left( {gt} \right)\end{array} \right.\)
Suy ra \(HE.HD = H{C^2}\,\,\,\left( {dpcm} \right).\)
>> Học trực tuyến lớp 9 và Lộ trình UP10 trên Tuyensinh247.com Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Lộ trình học tập 3 giai đoạn: Học nền tảng lớp 9, Ôn thi vào lớp 10, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả. PH/HS tham khảo chi tiết khoá học tại: Link
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com











