Cho tam giác ABC có \(\angle ACB > {90^0}\) nội tiếp trong đường tròn tâm \(O\). Gọi \(M\) là trung
Cho tam giác ABC có \(\angle ACB > {90^0}\) nội tiếp trong đường tròn tâm \(O\). Gọi \(M\) là trung điểm \(BC\), đường thẳng OM cắt cung nhỏ \(cung\,\,BC\) tại D, cắt cung lớn \(cung\,\,BC\) tại \(E\). Gọi \(F\) là chân đường vuông góc hạ từ E xuống AB, H là chân đường vuông góc hạ từ \(B\) xuống \(AE\).
a) Chứng minh tứ giác \(BEHF\) là tứ giác nội tiếp.
b) Chứng minh \(MF \bot AE\).
c) Đường thẳng MF cắt AC tại Q. Đường thẳng EC cắt AD, AB lần lượt tại I và K. Chứng minh: \(\angle EQA = {90^0}\) và \(\dfrac{{EC}}{{IC}} = \dfrac{{EK}}{{IK}}\).
Quảng cáo
a) Vận dụng dấu hiệu nhận biết: Tứ giác có hai đỉnh kề cùng nhìn một cạnh dưới các góc bằng nhau là tứ giác nội tiếp.
b) Ta sẽ chứng minh:
+ 5 điểm \(B,\,\,M,\,\,F,\,\,H,\,\,E\) cùng thuộc đường tròn đường kính \(BE\).
+ \(\angle MFB = \angle FBH\)
Suy ra \(MF//BH\) mà \(BH \bot AE\,\,\left( {gt} \right)\) nên \(MF \bot AE\,\,\left( {dpcm} \right)\) (quan hệ từ vuông góc đên song song)
c) Ta sẽ chứng minh:
+ \(\Delta FAQ\) cân tại A \( \Rightarrow AQ\, = AF\)
+ \(\Delta AEQ\)\( = \,\Delta AEF\)(c.g.c)
Suy ra \(\angle EQA = \angle EFA = {90^0}\) (2 góc tương ứng)
Sử dụng tích chất đường phân trong và đường phân giác ngoài của góc ở đỉnh \(A\)
>> Học trực tuyến lớp 9 và Lộ trình UP10 trên Tuyensinh247.com Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Lộ trình học tập 3 giai đoạn: Học nền tảng lớp 9, Ôn thi vào lớp 10, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả. PH/HS tham khảo chi tiết khoá học tại: Link
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com











