Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Giỏ hàng của tôi

Trong không gian với hệ trục tọa độ vuông góc \(Oxyz\), cho đường thẳng \(d:\dfrac{x}{1} =

Câu hỏi số 543211:
Vận dụng

Trong không gian với hệ trục tọa độ vuông góc \(Oxyz\), cho đường thẳng \(d:\dfrac{x}{1} = \dfrac{{y + 1}}{2} = \dfrac{{z - 2}}{{ - 1}}\) và mặt phẳng \(\left( P \right):x + y + z - 3 = 0\). Phương trình đường thẳng d' đối xứng với d qua (P) là

Đáp án đúng là: B

Quảng cáo

Câu hỏi:543211
Phương pháp giải

Bước 1: Lấy điểm \(B\left( {0; - 1;2} \right)\) thuộc d.

Bước 2: Tìm giao điểm A của d và (P)

Bước 3: Gọi H là hình chiếu của B lên (P), B’ là điểm đối xứng B qua (P). Tìm d’

Giải chi tiết

Bước 1: Lấy điểm \(B\left( {0; - 1;2} \right)\) thuộc d.

Bước 2: Tìm giao điểm A của d và (P)

Gọi A là giao điểm của d và (P).

Khi đó \(A\left( {t; - 1 + 2t;2 - t} \right)\). Thay vào (P) ta được: \(t - 1 + 2t + 2 - t - 3 = 0 \Leftrightarrow t = 1\) \( \Rightarrow A\left( {1;1;1} \right)\)

Bước 3: Tìm d’

Gọi H là hình chiếu của B lên (P), B’ là điểm đối xứng B qua (P).

Khi đó H là trung điểm của BB’

Đường thẳng BH đi qua B(0;-1;2) và nhận \(\overrightarrow {{n_{\left( P \right)}}}  = \left( {1;1;1} \right)\) làm vecto chỉ phương có phương trình là: \(\left\{ \begin{array}{l}x = t\\y =  - 1 + t\\z = 2 + t\end{array} \right.\)

\( \Rightarrow H\left( {t; - 1 + t;2 + t} \right)\). Thay vào (P) ta được: \(t - 1 + t + 2 + t - 3 = 0 \Leftrightarrow t = \dfrac{2}{3}\)

\( \Rightarrow H\left( {\dfrac{2}{3}; - \dfrac{1}{3};\dfrac{8}{3}} \right)\)\( \Rightarrow B'\left( {\dfrac{4}{3};\dfrac{1}{3};\dfrac{{10}}{3}} \right)\)

Vecto chỉ phương của AB’ là: \(AB' = \left( {\dfrac{1}{3}; - \dfrac{2}{3};\dfrac{7}{3}} \right)\)

Đường thẳng \(d':\dfrac{{x - 1}}{1} = \dfrac{{y - 1}}{{ - 2}} = \dfrac{{z - 1}}{7}\)

Đáp án cần chọn là: B

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com