Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Từ ba số \(1,2,3\) có thể lập được bao nhiêu số tự nhiên có \(6\) chữ số sao

Câu hỏi số 553220:
Thông hiểu

Từ ba số \(1,2,3\) có thể lập được bao nhiêu số tự nhiên có \(6\) chữ số sao cho sao cho mỗi chữ số xuất hiện 2 lần và \(2\) chữ số giống nhau không đứng kề nhau?

Đáp án đúng là: B

Quảng cáo

Câu hỏi:553220
Giải chi tiết

Đặt \(A = \left\{ {1;2;3} \right\}\). Gọi \(S\) là tập hợp các số thỏa mãn yêu cầu bài toán.

Ta có số các số thỏa mãn điều kiện là số tự nhiên có 6 chữ số là \(\dfrac{{6!}}{{{2^3}}} = 90\) (Các số có dạng \(\overline {aabbcc} \) được tính 2.2.2 lần).

Gọi \({S_1},\,\,{S_2},\,\,{S_3}\) là tập các số thuộc \(S\) mà có 1, 2, 3 cặp chữ số giống nhau đứng cạnh nhau.

+ Số phần tử của \({S_3}\) chính bằng số hoán vị của 3 cặp \(11,\,\,22,\,\,33\) nên \({S_3}\) có \(3! = 6\) số phần tử.

+ Số phần tử của \({S_2}\) chính bằng số hoán vị của 4 phần tử có dạng \(a,\,\,a,\,\,bb,\,\,cc\) nhưng \(a,\,\,a\) không đứng cạnh nhau. Nên \({S_2}\) có \(\dfrac{{4!}}{2} - 6 = 6\) phần tử.

+ Số phần tử của \({S_1}\) chính bằng số hoán vị của các phần tử có dạng \(a,\,\,a,\,\,b,\,\,b,\,\,cc\) nhưng \(a,\,\,a\) và \(b,\,\,b\) không đứng cạnh nhau, nên \({S_1}\) có \(\dfrac{{5!}}{4} - 6 - 12 = 12\) phần tử.

Vậy các số thỏa mãn yêu cầu bài toán là: \(90 - \left( {6 + 6 + 12} \right) = 66\) số.

Đáp án cần chọn là: B

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com