Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho đường tròn (O) đường kính AB, C là điểm bất kỳ trên đường tròn (C khác A, B). Gọi H là

Câu hỏi số 562002:
Vận dụng

Cho đường tròn (O) đường kính AB, C là điểm bất kỳ trên đường tròn (C khác A, B). Gọi H là hình chiếu của C trên AB, M là trung điểm của CH. Kẻ tia MK vuông góc với CO (K thuộc OC) cắt đường tròn (O) tại E. Kẻ đường kính CI của đường tròn (O) . Chứng minh:

1) \(CE \bot EI.\)

2) Tam giác \(CEH\)cân.

Quảng cáo

Câu hỏi:562002
Phương pháp giải

a) Góc nội tiếp chắn nửa đường tròn bằng \({90^0} \Rightarrow CE \bot EI\)

b) \(\dfrac{{C{H^2}}}{2} = \dfrac{{C{E^2}}}{2} = CK.CO \Rightarrow CH = CE \Rightarrow \Delta CHE\) cân

Giải chi tiết

a) \(CI\) là đường kính của đường tròn \(\left( O \right)\), mà \(E \in \left( O \right)\)

\( \Rightarrow \angle CEI = {90^0}\) (góc nội tiếp chắn nửa đường tròn)

\( \Rightarrow CE \bot EI\)

b) Xét \(\Delta CKM\) và \(\Delta CHO\) có:

\(\left. \begin{array}{l}\angle HCO\,\,chung\\\angle CKM = \angle CHO = {90^0}\end{array} \right\} \Rightarrow \Delta CKM \sim \Delta CHO\left( {g.g} \right)\)

\(\begin{array}{l} \Rightarrow \dfrac{{CK}}{{CM}} = \dfrac{{HC}}{{CO}}\\ \Leftrightarrow CK.CO = CM.HC\\ \Leftrightarrow CK.CO = CM.2CM\\ \Leftrightarrow 2C{M^2} = CK.CO\end{array}\)

Có \(\dfrac{{C{H^2}}}{2} = \dfrac{{{{\left( {2CM} \right)}^2}}}{2} = 2C{M^2}\)

\( \Rightarrow \dfrac{{C{H^2}}}{2} = CK.CO\,\,\,\,\left( 1 \right)\)

Xét \(\Delta CEI\) có: \(EK \bot CI,\angle CEI = {90^0}\)

\(\begin{array}{l} \Rightarrow C{E^2} = CK.CI = 2CK.2CO\\ \Leftrightarrow \dfrac{{C{E^2}}}{2} = CK.CO\,\,\,\,\,\left( 2 \right)\end{array}\)

Từ (1) và (2), suy ra \(\dfrac{{C{H^2}}}{2} = \dfrac{{C{E^2}}}{2} = CK.CO\)

\( \Rightarrow CH = CE\)

\( \Rightarrow \Delta CHE\) cân tại \(C\)

PH/HS 2K10 THAM GIA NHÓM ĐỂ CẬP NHẬT ĐIỂM THI, ĐIỂM CHUẨN MIỄN PHÍ!

>> Học trực tuyến lớp 9 và Lộ trình UP10 trên Tuyensinh247.com Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Lộ trình học tập 3 giai đoạn: Học nền tảng lớp 9, Ôn thi vào lớp 10, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả. PH/HS tham khảo chi tiết khoá học tại: Link

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com