Hình giải tích phẳng
Trong mặt phẳng Oxy cho đường tròn (C): x2 + y2 + 4√3x – 4 = 0. Cho điểm A(2√3 ; 0 ). Đường tròn ( C’ ) di động nhưng luôn luôn qua điểm A và tiếp xúc với đường tròn ( C ). Chứng minh các tâm của các đường tròn ( C’ ) luôn luôn nằm trên một hypebol cố định. Viết phương trình hypebol đó.
Đáp án đúng là: C
Quảng cáo
Đáp án cần chọn là: C
>> 2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com


-
= 1.










